Self Studies

Binomial Theorem Test - 43

Result Self Studies

Binomial Theorem Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coefficient of $$x^5$$ in the expansion of $$(1+x)^{21}+(1+x)^{22}+........+(1+x)^{30}$$ is:
    Solution
    Given :
    $$(1+x)^{21}+(1+x)^{22}+(1+x)^{23}+.....+(1+x)^{30}$$

    Coefficient of $$x^{5}$$

    $$\ ^{21}C_{5}(1)^{16}x^{5}+\ ^{22}C_{5}(1)^{17}x^{5}+\ ^{23}C_{5}(1)^{18}x^{5}+.... +\ ^{29}C_{5}(1)^{24}x^{5}+\ ^{30}C_{5}(1)^{25}x^{5}$$

    $$=x^{5}\left[\ ^{21}C_{5}+\ ^{22}C_{5}+\ ^{23}C_{5}+.....+\ ^{29}C_{5}+\ ^{30}C_{5}\right] ....... (1)$$

    Now we know $$\ ^{n}C_{r}+\ ^{n}C_{r-1}=\ ^{n+1}C_{r}$$

    $$\therefore$$ Adding and substracting $$\ ^{21}C_{6}$$ from eq $$(1)$$

    the coefficient of $$x^{5}$$

    $$\ ^{21}C_{5}+\ ^{21}C_{6}+\ ^{22}C_{5}+\ ^{25}C_{5}+.....+\ ^{29}C_{5}+\ ^{30}C_{5}-\ ^{21}C_{6}$$

    $$=\ ^{22}C_{6}+\ ^{22}C_{5}+\ ^{23}C_{5}+.....+\ ^{29}C_{5}+\ ^{30}C_{5}-\ ^{21}C_{6}$$

    $$=\ ^{23}C_{6}+\ ^{23}C_{5}+....+\ ^{29}C_{5}+\ ^{30}C_{5}-\ ^{21}C_{6}$$

    This way
    $$\ ^{30}C_{6}+\ ^{30}C_{5}-\ ^{21}C_{6}$$

    $$\Rightarrow \ ^{31}C_{6}- \ ^{21}C_{6}$$ [Using $$\ ^{n}C_{r}+\ ^{n}C_{r-1}=\ ^{n+1}C_{r}$$]
  • Question 2
    1 / -0
    The co efficient of $${ x }^{ 99 }$$ in the polynomial $$\left( x-1 \right) \left( x-2 \right) \left( x-3 \right) .....\left( x-100 \right) $$ is

    Solution
    $${ x }^{ 99 }$$ in $$\left( x-1 \right) \left( x-2 \right) \left( x-3 \right) .....\left( x-100 \right) $$
    $${ x }^{ 99 }=-$$(sum of roots)
    $$=-\left( 1+2+3+...100 \right) $$
    $$=-\cfrac { 100\times 101 }{ 2 } $$
    $$=-5050$$
  • Question 3
    1 / -0
    If the sum of the co-efficient in the expansion of $$(a+b)^n$$ is $$1024$$, then the greatest co-efficient in the expansion is 
    Solution
    Sum of coefficient in the expansion of $$(a+b)^{n}$$ is $$1024$$
    put $$a=b=1,2^{n}=1024\implies n=10$$
    The greatest coefficient is $$^{10}C_{5}=252$$
  • Question 4
    1 / -0
    If $$n\ge 2$$ then $$3.{ C }_{ 1 }-4.{ C }_{ 2 }+5.{ C }_{ 3 }-......+{ \left( -1 \right)  }^{ n-1 }\left( n+2 \right) .{ C }_{ n }$$ is equal to
    Solution
    $$(1+x)^n=^nC_0+^nC_1x+^nC_2x^2+....+^nC_n x^n$$

    $$x^2(1+x)^n=^nC_0 x^2+^nC_1x^3+^nC_2x^4+....+^nC_n x^{n+2}$$
    differentiate w.r.t $$x$$

    $$2x(1+x)^n+nx^2(1+x)^{n-1}=2^nC_0 x+3 ^nC_1x^2+4 ^nC_2x^3+....+(n+2)^nC_n x^{n+1}$$

    put $$x=-1$$

    $$0=-2+3 ^nC_1-4 ^nC_2+5 ^nC_3+.....+(-1)^{n-1}(n+2) ^nC_n$$

    so $$3 ^nC_1- 4 ^nC_2+5 ^nC_3+.....+(-1)^{n-1}(n+2) ^nC_n=2$$
  • Question 5
    1 / -0
    For $$2\leq r \leq n, \left( ^{n+1} _r\right)+\left( ^n _{r-1}\right) + \left( ^n _{r-2}\right)$$ is equal to-
    Solution
    $$^{n+1}C_r +^nC_{r-1} +^nC_{r-2}\\=^{n+1}C_r+^{n+1}C_{r-1} \\=^{n+2}C_{r} $$
  • Question 6
    1 / -0
    The $$6^{th}$$ coefficient in the expansion of $$\left (2x^2 - \dfrac {1}{3x^2}\right)^{10}$$
    Solution
    $${ \left( 2{ x }^{ 2 }-\dfrac { 1 }{ { { 3x }^{ 2 } } }  \right)  }^{ 10 }$$
    $$6^{th}$$ coefficient $$\rightarrow$$ $$5^{th}$$ term
    $$={ ^{ 10 }{ C } }_{ 5 }{ \left( 2{ x }^{ 2 } \right)  }^{ 5 }{ \left( \dfrac { -1 }{ { { 3x }^{ 2 } } }  \right)  }^{ 5 }$$
    $$={ ^{ 10 }{ C } }_{ 5 }\times 2^5\times \dfrac{-1}{3^5}$$
    $$=-\dfrac{252\times 32}{243}$$
    $$=-\dfrac{896}{27}.$$
    Hence, the answer is $$-\dfrac{896}{27}.$$
  • Question 7
    1 / -0
    The sum $$^{10}C_3 + ^{11}C_3 + ^{12}C_3 + .... + ^{20}C_3$$ is equal to
    Solution
    $$ ^{10}C_{3} +\ ^{11}C_{3} +\ ^{12}C_{3} + --- +\ ^{20}C_{3} $$ ....(i)
    addition and subtraction $$^{10}C_{4}$$ in equation (i) 
    $$ ^{10}C_{4} -\ ^{10}C_{4} +\ ^{10}C_{3} +\ ^{11}C_{3} + --- +\ ^{20}C_{3}$$
    [we know that - $$ ^nc_{r-1} +\ ^nc_{r} =\ ^{n+1}c_{r}] $$
    $$^{10}C_{3} +\ ^{10}C_{4} +\ ^{11}C_{3} + --- +\ ^{20}C_{3} -\ ^{10}C_{4} $$
    $$=\ ^{11}C_{4} +\ ^{11}C_{3} +\ ^{12}C_{3} + ---+\ ^{20}C_{3} -\ ^{10}C_{4} $$
    $$=\ ^{12}C_{4} +\ ^{12}C_{3} + --- +\ ^{20}C_{3} -\ ^{10}C_{4} $$
    $$ =\ ^{13}C_{4} +\ ^{14}C_{3} + --- +\ ^{20}C_{3} -\ ^{10}C_{4}$$
    Similarly      Continue 
    So, we get      $$^{21}C_{4} - \ ^{10}C_{4}$$
    So, option (B) is correct 
  • Question 8
    1 / -0
    Prove that $$C_0+C_1+C_2+.....C_n=2^n$$
    Solution
    $$(1+x)^n=^nC_0+^nC_1x+\cdots+^nC_nx^n$$

    Let $$x=1$$

    $$\Rightarrow C_0+C_1.1+C_2.1^2+\cdots+C_n.1^n=(1+1)^n=2^n$$

    $$\Rightarrow C_0+C_1+C_2.1+\cdots+C_n=(1+1)^n=2^n$$
  • Question 9
    1 / -0
    $$\sum\limits_{k = 1}^{n - r} {{}^{n - k}\mathop C\nolimits_r  = {}^x\mathop C\nolimits_y } $$
    Solution

  • Question 10
    1 / -0
    Find the $$13^{th}$$ terms in the expansion of $$\left(9x-\dfrac{1}{3\sqrt{x}}\right)^{18}, x \neq 0$$.
    Solution
    $${\left( {9x - \frac{1}{{\sqrt {3x} }}} \right)^{18}}$$
    $${T_{r + 1}} = {}^{18}{C_r}{\left( {9x} \right)^{18 - r}}{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^r}$$
    putting  $$r = 12$$
    $${T_{13}} = {}^{18}{C_{12}}{\left( {9x} \right)^{18 - 12}}{\left( { - \dfrac{1}{{3\sqrt x }}} \right)^r}$$
          $$ = {}^{18}{C_6} \times {\left( {9x} \right)^6} \times \dfrac{1}{{{3^{12}} \times {x^6}}}$$
          $$ = {}^{18}{C_6} \times {9^6} \times {x^6} \times \dfrac{1}{{{3^{12}} \times {x^6}}}$$
          $$ = {}^{18}{C_6} \times {3^{12}} \times \dfrac{1}{{{3^{12}}}}$$

          $$ = \dfrac{{18 \times 17 \times 16 \times 15 \times 14 \times 13}}{{6 \times 5 \times 4 \times 3 \times 2}}$$

          $$ = 17 \times 4 \times 3 \times 7 \times 13$$
          $$ = 18564$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now