Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    The coefficient of $$x^5$$ in the expansion of $$(1+x)^{21}+(1+x)^{22}+........+(1+x)^{30}$$ is:

  • Question 2
    1 / -0

    The co efficient of $${ x }^{ 99 }$$ in the polynomial $$\left( x-1 \right) \left( x-2 \right) \left( x-3 \right) .....\left( x-100 \right) $$ is

  • Question 3
    1 / -0

    If the sum of the co-efficient in the expansion of $$(a+b)^n$$ is $$1024$$, then the greatest co-efficient in the expansion is 

  • Question 4
    1 / -0

    If $$n\ge 2$$ then $$3.{ C }_{ 1 }-4.{ C }_{ 2 }+5.{ C }_{ 3 }-......+{ \left( -1 \right)  }^{ n-1 }\left( n+2 \right) .{ C }_{ n }$$ is equal to

  • Question 5
    1 / -0

    For $$2\leq r \leq n, \left( ^{n+1} _r\right)+\left( ^n _{r-1}\right) + \left( ^n _{r-2}\right)$$ is equal to-

  • Question 6
    1 / -0

    The $$6^{th}$$ coefficient in the expansion of $$\left (2x^2 - \dfrac {1}{3x^2}\right)^{10}$$

  • Question 7
    1 / -0

    The sum $$^{10}C_3 + ^{11}C_3 + ^{12}C_3 + .... + ^{20}C_3$$ is equal to

  • Question 8
    1 / -0

    Prove that $$C_0+C_1+C_2+.....C_n=2^n$$

  • Question 9
    1 / -0

    $$\sum\limits_{k = 1}^{n - r} {{}^{n - k}\mathop C\nolimits_r  = {}^x\mathop C\nolimits_y } $$

  • Question 10
    1 / -0

    Find the $$13^{th}$$ terms in the expansion of $$\left(9x-\dfrac{1}{3\sqrt{x}}\right)^{18}, x \neq 0$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now