Self Studies

Binomial Theorem Test - 50

Result Self Studies

Binomial Theorem Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The term independent of $$x$$ in the expansion of $$\left(\sqrt{\dfrac{x}{3}}+\dfrac{3}{2x^{2}}\right)^{10}$$ will be
    Solution
    As we know that the general term in an expansion $${\left( a + b \right)}^{n}$$ is given as-
    $${T}_{r + 1} = {^{n}{C}_{r}} {a}^{r} {b}^{n - r}$$
    Given expansion- $${\left( \sqrt{\cfrac{x}{3}} + \cfrac{3}{2 {x}^{2}} \right)}^{10}$$
    Here, $$a = \sqrt{\cfrac{}{3}}, \quad b = \cfrac{3}{2 {x}^{2}}, \quad n = 10$$
    Therefore,
    $${T}_{r + 1} = {^{10}{C}_{r}} {\left( \sqrt{\cfrac{x}{3}} \right)}^{r} {\left( \cfrac{3}{2 {x}^{2}} \right)}^{10 - r}$$
    $$\Rightarrow {T}_{r + 1} {^{10}{C}_{r}} \; {x}^{\left( \frac{r}{2} - 20 + 2r \right)} {3}^{\left( 10 - r - \frac{r}{2} \right)} {2}^{\left( r - 10 \right)} = {^{10}{C}_{r}} \; {x}^{\left( \frac{5r}{2} - 20 \right)} {3}^{\left( 10 - \frac{3r}{2} \right)} {2}^{\left( r - 10 \right)}$$
    For the term independent of $$x$$-
    $$\cfrac{5r}{2} - 20 = 0$$
    $$\Rightarrow r = \cfrac{20 \times 2}{5} = 8$$
    Hence $${8 + 1}^{th} = {9}^{th}$$ term will be independent of $$x$$.
  • Question 2
    1 / -0
    If the fourth term in the expansion of  $$\left( p x + \dfrac { 1 } { x } \right) ^ { n }$$  is  $$\dfrac { 5 } { 2 } ,$$  then  $$n + p$$  is equal to
    Solution

  • Question 3
    1 / -0
    The sum of the coefficients of the first three terms in the expansion of  $${\left( {x - \frac{3}{{{x^2}}}} \right)^m},\,x \ne 0$$ $$m$$ being a natural number is , $$559$$. Find the term of the expansion containing $$x^3$$
    Solution
    $$\begin{array}{l} { \left( { x-\frac { 3 }{ { { x^{ 2 } } } }  } \right) ^{ m } }{ =^{ m } }{ C_{ o } }{ \left( x \right) ^{ m } }{ \left( { \frac { { -3 } }{ { { x^{ 2 } } } }  } \right) ^{ 0 } }{ +^{ m } }{ C_{ 1 } }{ \left( x \right) ^{ m-1 } }{ \left( { \frac { { -3 } }{ { { x^{ 2 } } } }  } \right) ^{ 1 } }{ +^{ m } }{ C_{ 2 } }{ x^{ m-2 } }{ \left( { \frac { { -3 } }{ { { x^{ 2 } } } }  } \right) ^{ 2 } }+...... \\ { =^{ m } }{ C_{ o } }{ \left( x \right) ^{ m } }+{ \left( { -3 } \right) ^{ m } }{ C_{ 1 } }{ \left( x \right) ^{ m-1-2 } }+{ 9.^{ m } }{ C_{ 2 } }{ \left( x \right) ^{ m-2-4 } }+.... \\ { \Rightarrow ^{ m } }{ C_{ o } }+{ \left( { -3 } \right) ^{ m } }{ C_{ 1 } }+{ 9.^{ m } }{ C_{ 2 } }=559 \\ \Rightarrow 1-3m+9\frac { { m\left( { m-1 } \right)  } }{ 2 } =559 \\ \Rightarrow 2-6m+9{ m^{ 2 } }-9m=2\times 559=1118 \\ \Rightarrow 9{ m^{ 2 } }-15m-1116=0 \\ \Rightarrow 3{ m^{ 2 } }-15m-372=0 \\ \Rightarrow 3{ m^{ 2 } }-36m+31m-372=0 \\ \Rightarrow 3m\left( { m-12 } \right) +31\left( { m-12 } \right) =0 \\ \Rightarrow \left( { m-12 } \right) \left( { 3m+31 } \right) =0 \\ \therefore m=12,\, \, and\, m=\frac { { -31 } }{ 3 } \left( { does\, not\, exist } \right)  \\ so,\, we\, take\, m=12 \\ { \left( { x-\frac { 3 }{ { { x^{ 2 } } } }  } \right) ^{ 12 } } \\ Then \\ { T_{ r+1 } }{ =^{ 12 } }{ C_{ r } }{ x^{ 12r } }{ \left( { \frac { { -3 } }{ { { x^{ 2 } } } }  } \right) ^{ r } } \\ ={ \left( { -1 } \right) ^{ r } }{ 3^{ r } }^{ 12 }{ C_{ r } }{ x^{ 12-r-25 } } \\ ={ \left( { -1 } \right) ^{ r } }{ 3^{ r } }^{ 12 }{ C_{ r } }{ x^{ 12-3r } } \\ Containg\, { x^{ 3 } } \\ 12-3r=0 \\ \therefore r=3 \\ Now, \\ { T_{ 4 } }={ T_{ 3+1 } }={ \left( { -1 } \right) ^{ 3 } }{ 3^{ 3 } }\, { \, ^{ 12 } }{ C_{ 3 } }{ x^{ 3 } } \\ =-27\, \, { \, ^{ 12 } }{ C_{ 3 } }{ x^{ 3 } } \\ { T^{ 4 } }=-5940{ x^{ 3 } } \end{array}$$
    hence, the option $$A$$ is the correct answer.
  • Question 4
    1 / -0
    $$ \binom{n}{0}+2\binom{n}{1}+2^{2}\binom{n}{2}+......++2^{n}\binom{n}{n} $$ is equal to
    Solution
    Consider $$(1+x)^n=1+^nC_1x+^nC_2x^2+.........+\,^nC_nx^n$$

    Put $$x=2$$

    $$3^n=1+2^nC_1+4^nC_2+......+2^n \,^nC_n$$

    So correct answer is $$3^n$$

    option (C)
  • Question 5
    1 / -0
    The coefficient of  $$x ^ { 8 }$$  in the expansion of  $$\left( 1 + x ^ { 4 } \right) ^ { 3 } ( 1 - x ) ^ { 12 }$$  is
    Solution

  • Question 6
    1 / -0
    $$\dfrac{C_0}{1} + \dfrac{C_2}{3} + \dfrac{C_4}{5} + \dfrac{C_6}{7} ..... = $$
    Solution
    $$\begin{array}{l} \frac { { { C_{ o } } } }{ 1 } +\frac { { { C_{ 2 } } } }{ 3 } +\frac { { { C_{ 4 } } } }{ 5 } +\frac { { { C_{ 6 } } } }{ 7 } ..... \\ 1+\frac { { n\times \left( { n-1 } \right)  } }{ { 3! } } +\frac { { n\times \left( { n-1 } \right) \left( { n-2 } \right) \left( { n-3 } \right)  } }{ 5 } +...... \\ \frac { 1 }{ { n+1 } } \left[ { \left( { n+1 } \right) \frac { { \left( { n+1 } \right) \times n\times \left( { n-1 } \right)  } }{ { 3! } } +\frac { { n\left( { n+1 } \right) \left( { n-1 } \right) \left( { n-2 } \right)  } }{ { 5! } }  } \right]  \\ \frac { 1 }{ { n+1 } } \left[ { { 2^{ n+1-1 } } } \right]  \\ \frac { { { 2^{ n } } } }{ { n+1 } }  \end{array}$$
    Hence the option $$A$$ is the correct answer.
  • Question 7
    1 / -0
    $$C_1 +2C_2 + 3C_3 +4C_4 + ......... + {n+1} nC_n$$
    Solution
    $$\begin{array}{l} { C_{ 1 } }+2{ C_{ 2 } }+3{ C_{ 3 } }+......+n{ C_{ n } } \\ =n+2\times \frac { { n\left( { n-1 } \right)  } }{ { 2! } } +3\times \frac { { n\left( { n-1 } \right) \left( { n-2 } \right)  } }{ { 3! } } +....+n\times 1 \\ =n+2\times \frac { { n\left( { n-1 } \right)  } }{ 1 } +3\times \frac { { n\left( { n-1 } \right)  } }{ 6 } +....+n \\ =n+\frac { { n\left( { n-1 } \right)  } }{ 1 } +\frac { { n\left( { n-1 } \right)  } }{ 2 } +.....+n \\ =n\left[ { 1+\frac { { n-1 } }{ 1 } +\frac { { n\left( { n-1 } \right)  } }{ 2 } +.....+1 } \right]  \\ =n\left[ { 1+\frac { { n-1 } }{ { 1! } } +\frac { { n\left( { n-1 } \right)  } }{ { 2! } } +.....+1 } \right]  \\ put\, \, \, \, \, n-1=N \\ =n\left[ { 1+\frac { N }{ { 1! } } +\frac { { N\left( { N+1 } \right)  } }{ { 2! } } +.....+1 } \right]  \\ =n\left( { ^{ N }{ C_{ 0 } }{ +^{ N } }{ C_{ 1 } }{ +^{ N } }{ C_{ 2 } }+....{ +^{ N } }{ C_{ N } } } \right)  \\ =n{ 2^{ N } } \\ =n{ 2^{ n-1 } } \\ Hence,\, the\, option\, A\, is\, the\, correct\, answer \end{array}$$
  • Question 8
    1 / -0
    $$(1+x)^{21}+(1+x)^{22}+..+(1+x)^{30}$$ in the expansion of this what is the coefficient of $$x^{5}$$ is
    Solution

  • Question 9
    1 / -0
    The sum $$^ { 20 } \mathrm { C } _ { 0 } + ^ { 20 } \mathrm { C } _ { 1 } + ^ { 20 } \mathrm { C } _ { 2 } + \ldots \ldots . ^ { 20 } \mathrm { C } _ { 10 }$$ is equal to
    Solution
    As we know that $$(1+x)^{20}=^{20}C_{0}+^{20}C_{1} x+^{20}C_{2} x^2+\cdots+^{20}C_{20} x^{20}$$

    Put $$x=1$$

    $$\implies 2^{20}=^{20}C_{0}+^{20}C_{1}+^{20}C_2+\cdots+^{20}C_{20}$$
    $$\implies 2^{20}=^{20}C_{0}+^{20}C_{1}+\cdots+^{20}C_{10}+^{20}C_{9}+\cdots+^{20}C_{1}+^{20}C_{0}$$

    $$2^{20}=2(^{20}C_0+^{20}C_1+^{20}C_2+\cdots+^{20}C_{10})-^{20}C_{10}$$

    $$\implies ^{20}C_{0}+^{20}C_1+^{20}C_2+\cdots+^{20}C_{10}=2^{19}+\dfrac{1}{2}^{20}C_{10}=2^{19}+\dfrac{1}{2}\cdot \dfrac{20!}{(10!)^2}$$
  • Question 10
    1 / -0
    Coefficient of $$x^ {79}$$ in the expansion of $$\left(x+x^ {2}+x^ {4}\right)$$ is equal to-
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now