Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    The term independent of $$x$$ in the expansion of $$\left(\sqrt{\dfrac{x}{3}}+\dfrac{3}{2x^{2}}\right)^{10}$$ will be

  • Question 2
    1 / -0

    If the fourth term in the expansion of  $$\left( p x + \dfrac { 1 } { x } \right) ^ { n }$$  is  $$\dfrac { 5 } { 2 } ,$$  then  $$n + p$$  is equal to

  • Question 3
    1 / -0

    The sum of the coefficients of the first three terms in the expansion of  $${\left( {x - \frac{3}{{{x^2}}}} \right)^m},\,x \ne 0$$ $$m$$ being a natural number is , $$559$$. Find the term of the expansion containing $$x^3$$

  • Question 4
    1 / -0

    $$ \binom{n}{0}+2\binom{n}{1}+2^{2}\binom{n}{2}+......++2^{n}\binom{n}{n} $$ is equal to

  • Question 5
    1 / -0

    The coefficient of  $$x ^ { 8 }$$  in the expansion of  $$\left( 1 + x ^ { 4 } \right) ^ { 3 } ( 1 - x ) ^ { 12 }$$  is

  • Question 6
    1 / -0

    $$\dfrac{C_0}{1} + \dfrac{C_2}{3} + \dfrac{C_4}{5} + \dfrac{C_6}{7} ..... = $$

  • Question 7
    1 / -0

    $$C_1 +2C_2 + 3C_3 +4C_4 + ......... + {n+1} nC_n$$

  • Question 8
    1 / -0

    $$(1+x)^{21}+(1+x)^{22}+..+(1+x)^{30}$$ in the expansion of this what is the coefficient of $$x^{5}$$ is

  • Question 9
    1 / -0

    The sum $$^ { 20 } \mathrm { C } _ { 0 } + ^ { 20 } \mathrm { C } _ { 1 } + ^ { 20 } \mathrm { C } _ { 2 } + \ldots \ldots . ^ { 20 } \mathrm { C } _ { 10 }$$ is equal to

  • Question 10
    1 / -0

    Coefficient of $$x^ {79}$$ in the expansion of $$\left(x+x^ {2}+x^ {4}\right)$$ is equal to-

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now