Self Studies

Binomial Theorem Test - 51

Result Self Studies

Binomial Theorem Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of integral terms in the expansion of $$ (\sqrt{3}+\sqrt[8]{5})^{256}  $$ is
    Solution
    In the expansion of $$(\sqrt3 +\sqrt[8]5)^{256}$$,

    General term,  $$T_{r+1}=^{256}C_r (\sqrt 3)^{256-r}(\sqrt [8]{5})^r$$
    $$=\ ^{256}C_r\cdot 3^{(256-r)/2}\cdot 5^{r/8}$$

    The terms are integral if $$\dfrac{256-r}{2}$$ and $$\dfrac{r}{8}$$ are both positive integers.
    $$\therefore r=0, 8, 16, 24,...., 256$$
    Hence, there are $$33$$ integral terns.
  • Question 2
    1 / -0
    For a binomial distribution, n = 5.
    If P (X = 4) = P (X = 3), then P (X > 2) is 
    Solution

    $$n=5\\P(X=4)=^5C_4p^4q=5p^4q\\P(X=3)=^5C_3p^3q^2=10p^3q^2\\P(X=3)=P(X=4)\implies p=2q\\p+q=1\\q=\dfrac 13,p=\dfrac 23\\P(X>2)=P(X=3)+P(X=4)+P(X=5)\\10\left(\dfrac 23\right)^3\left(\dfrac 13\right)^2+5\left(\dfrac 23\right)^4\left(\dfrac 13\right)+\left(\dfrac 23\right)^5=\dfrac{192}{243}=0.79$$


  • Question 3
    1 / -0
    The coefficient of $$t^{50}$$ in $$(1+t)^{41}(1-t+t^2)^{40}$$ is equal to?
    Solution

  • Question 4
    1 / -0
    The coefficient of $$x^{8}$$ in the polynomial $$\left(x-1\right)\left(x-2\right)\left(x-3\right).\left(x-10\right)$$ is:
    Solution

  • Question 5
    1 / -0
    Find the middle term in the expansion of $$(1-2x+x^2)^n$$
    Solution
    Given expression $$(1-2x+x^2)^n$$

    $$\Rightarrow \ (1-2x+x^2)^n =[(1-x)^2]^n =(1-x)^{2n}$$

    Middle term $$\left (\dfrac {2n}{2}+1\right)^{th} \Rightarrow (n+1)^{th} $$ term

    $$T_{n+1}=^{2n}C_1 (1)^{2n-n} (-x)^n$$

    $$=\dfrac {2n!}{(n!)^2}(1)^n (-x)^n$$

    Middle term is $$\dfrac {(2n!)}{(n!)^2} (-1)^n x^n$$
  • Question 6
    1 / -0
    If $$\left(1+x+x^ {2}+x^ {3}\right)^ {5}=a_{0}+a_{1}x+a_{2}x^ {2}+....+a_{15}x^ {15}$$, then $$a_{10}$$ equals
    Solution

  • Question 7
    1 / -0
    The largest coefficient in the expansion of $${ \left( 1+x \right)  }^{ 38 }$$ is
    Solution

  • Question 8
    1 / -0
    Given that the term of the expansion $$\displaystyle (x^{1/3}+  x^{-1/2})^{15}$$  which does not contain $$x$$ is $$5$$ m , where m$$\in$$N , m $$=$$
    Solution
    Given,

    $$(x^{\dfrac{1}{3}}+x^{-\dfrac{1}{2}})^{15}$$

    $$T_{r+1}=^{15}C_r(x^{\dfrac{1}{3}})^{15-r}(x^{-\dfrac{1}{2}})^r$$

    Power of $$x=\dfrac{15-r}{3}-\dfrac{r}{2}=0$$ for $$x^0$$

    $$2(15-r)-3r=0$$

    $$30-2r-3r=0$$

    $$30-5r=0$$

    $$r=6$$

    $$T_{r+1}=^{15}C_{6}=5005$$

    $$5m=5005\Rightarrow m=1001$$
  • Question 9
    1 / -0
    If the $$6^{th}$$ term in the expansion of $$\displaystyle \left [ \dfrac{1}{x^{8/3}} + x^2log_{10}x \right ]^8$$ is 5600 , then $$x$$ = 
    Solution
    From given, we have,

    6th term $$=^8C_5 x^{-\frac{8}{3} \times 3}(x^2 \log x)^5$$

    $$\Rightarrow \dfrac{ 8 \times 7 \times 6}{3 \times 2} \times x^{-8} \times x^{10}(\log x)^5 =5600$$

    $$x^2(\log_{10}x)^5 =100$$

    $$\therefore x=10$$
  • Question 10
    1 / -0
    If the second term of the expansion $${ [{ a }^{ { 1 }/{ 13 } }+\frac { a }{ \sqrt { { a }^{ -1 } }  } ] }^{ n }$$ is $$14{ a }^{ { 5 }/{ 2 } }$$, then the value of $$\frac { ^{ n }{ C }_{ 3 } }{^{ n } { C }_{ 2 } } $$ is .
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now