Self Studies

Binomial Theorem Test - 52

Result Self Studies

Binomial Theorem Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the expansion of $$\left( 1+x \right) ^{ n }$$, The binomial coefficients of three consecutive terms are respectively 220, 495 and 795, the value 
    Solution
    Suppose the three consecutive terms are $$T_{r-1},\,T_r$$ and $$T_{r+1}.$$

    Coefficient of these terms are $$^nC_{r-2},\,^nC_{r-1}$$ and $$^{n}C_r$$ respectively.

    These coefficient are equal to $$220,\,495$$ and $$792$$

    $$\therefore$$  $$\dfrac{^nC_{r-2}}{^nC_{r-1}}=\dfrac{220}{495}$$

    $$\Rightarrow$$  $$\dfrac{r-1}{n-r+2}=\dfrac{4}{9}$$

    $$\Rightarrow$$  $$9r-9=4n-4r+8$$

    $$\Rightarrow$$  $$4n+17=13r$$                  ------ ( 1 )

    Also,

    $$\dfrac{^nC_r}{^nC_{r-1}}=\dfrac{792}{495}$$

    $$\Rightarrow$$  $$\dfrac{n-r+1}{r}=\dfrac{8}{5}$$

    $$\Rightarrow$$  $$5n-5r+5=8r$$

    $$\Rightarrow$$  $$5n+5=13r$$

    $$\Rightarrow$$  $$5n+5=4n+17$$              [ From ( 1 ) ]

    $$\Rightarrow$$  $$n=12$$


  • Question 2
    1 / -0
    The term independent of x in the expansion of  $$\displaystyle \left ( x -\dfrac{1}{4} \right )^4\left ( x + \dfrac{1}{x} \right )^3$$
    Solution

  • Question 3
    1 / -0
    If in the expansion of $$(1+x)^{20}$$,the coefficients of rth and (r+4)th terms are equal,then r is equal to
    Solution
    From given, we have,

    $$(1+x)^{20}$$

    and $$r$$th term is equal to $$(r+4)$$th term

    $$\Rightarrow a=1,b=x,n=20$$

    $$T_{r+1}=^nC_ra^{n-r}b^r$$

    $$\Rightarrow T_{r+1}=^{20}C_r1^{n-r}x^r$$

    $$\therefore T_{r+1}=^{20}C_rx^r$$

    put $$r=r-1$$

    $$\therefore T_r=^{20}C_{r-1}x^{r-1}$$..........(1)

    put $$r=r+3$$

    $$\therefore T_{r+4}=^{20}C_{r+3}x^{r+3}$$.......(2)

    now,

    $$^{20}C_{r-1}=^{20}C_{r+3}$$

    we have formula,

    $$^nC_r=^nC_p\rightarrow r=n-p$$

    $$\Rightarrow r-1=20-(r+3)$$

    $$r-1=20-r-3$$

    $$2r=18$$

    $$\therefore r=9$$

  • Question 4
    1 / -0
    If $$(1+2x+3x^2 )^{10} = a_0+a_1x+a_2x^2+\ ...\,+a_{20}x^{20}$$, then $$a_1$$ equals
    Solution
    Given,
    $$(1+2x+3x^2 )^{10} = a_0+a_1x+a_2x^2+\ ...\ +a_{20}x^{20}$$

    Then, $$a_1$$ = Coefficient of $$x$$ in $$(1+2x+3x^2)^{10}$$

    Now, 
    $$(1+2x+3x^2)^{10}=\{( 1+2x)+3x^2\}^{10}$$
    $$=\ ^{10}C_0 (1+2x)^{10}+\ ^{10}C_1 (1+2x)^9(3x^2)+...$$.

    $$\therefore$$  Coefficient of $$x$$ in $$(1+2x+3x^2)^{10}$$
    $$=$$ Coefficient of $$x$$ in $$^{10}C_0(1+2x)^{10}$$
    $$=\ ^{10}C_0\cdot 2\cdot ^{10}C_1 $$
    $$=1\cdot 2\cdot 10=20$$
  • Question 5
    1 / -0
    Let $$2.^{20}C_0 + 5. ^{20} C_1 + 8. ^{20}C_2 + ..... + 62. ^{20}C_{20}$$. then sum of this series is 
    Solution
    $$2. ^{20}C_0 + 5. ^{20} C_1 + 8.^{20} C_2 \, + .... + \, 62. ^{20} C_{20} = \displaystyle \sum_{r = 0}^{20} \, (3r + 2) . ^{20} C_r$$
    $$= 3 \displaystyle \sum_{r = 0}^{20} r. \,  ^{20} C_r + 2 \displaystyle \sum_{r = 0}^{20} \, ^{20}C_r = 3 \times 20 \displaystyle \sum_{r = 1}^{20} \, ^{19} C_{r + 1} + 2. (2^{20}) = 60 . 2^{19} + 2.2^{20} = 16.2^{21}$$
  • Question 6
    1 / -0
    Find the $$7^{th}$$ term from the end in the expansion of $$\left(2x^{2}-\dfrac{3}{2x}\right)^{8}$$
    Solution
    Given to find the $$7^{th}$$ term in expression of $$\left(2x^{2}-\dfrac{3}{2x}\right)^{8}$$ from end

    $$r^{th}$$ term from end $$=(n-r+2)^{th}$$ term starting

    $$n=8, r=7$$

    $$7^{th}$$ from end $$=(8-7+2)^{th}=3^{rd}$$ from starting

    $$T_{3}=T_{2+1}=\ ^{8}C_{2}(2x^{2})^{6} \left(\dfrac{-3}{2x}\right)^{2}$$

    $$=\dfrac{8!}{2!6!}2^{6}.x^{12}(-1)^{2}\dfrac{3^{2}}{2^{x}x^{2}}$$

    $$T_{3}=4032 x^{10}$$
  • Question 7
    1 / -0
    Find the coefficient of $$x^{10}$$ in the expansion of $$\left(2x^{2}-\dfrac{1}{x}\right)^{20}$$
    Solution
    Given that to find the coefficient of $$x^{10}$$ in the term $$\left(2x^{2}-\dfrac{1}{x}\right)$$

    $$T_{r+1}=\ ^{20}C_{r}\left.\dfrac{}{}\right| (2x)^{20-r}\left(\dfrac{-1}{x}\right)^{r}$$

    $$=(-1)^{r}\ ^{20}C_{r} 2^{20-r}x^{40-2r-r}$$


    $$=(-1)^{r}\ ^{20}C_{r}2^{20-r}x^{40-3r}$$

    $$40-3r=10\Rightarrow 30=3r\Rightarrow r=10$$

    $$T_{11}=T_{10+1}=(-1)^{10}\ ^{20}C_{10} 20^{20-10}x^{10}$$

    $$=\ ^{20}C_{10} 2^{20-10}x^{10}$$

    $$T_{11}=\ ^{20}C_{10}2^{10}x^{10}$$
  • Question 8
    1 / -0
    The greatest term in the expansion of $$(2x + 3y)^{11}$$ when x = 9 and y = 4 is :
    Solution

  • Question 9
    1 / -0
    Find the coefficient of $$x^{-15}$$ in the expansion of $$\left(3x^{2}-\dfrac{a}{3x^{3}}\right)^{10}$$
    Solution
    Given that, to find coefficient of $$x^{-15}$$ in equation of $$\left (3x^2 -\dfrac {a}{3x^2}\right)^{10}$$

    $$T_{r+1}=^{10}C_{r} (3x)^{10-r} \left (\dfrac {-a}{3x^3}\right)^{10}$$

    $$=(-1) ^{10}C_{r}(3)^{10-r} (x^{20-2r}) (a^r) (x^{-3r}) \left (\dfrac {1}{3}\right)^r$$

    $$=(-1)^r\ ^{10}C_{r} 3^{10-r-r} x^{20-2r-3r} a^r$$

    $$T_{r+1}=(-1)^r\ ^{10}C_{r} 3^{10-2r} x^{20-5r} a^r$$

    $$20-5r =-15\ \Rightarrow 35=5r \Rightarrow r=7$$

    $$T_{8}=T_{7+1}=(-1)^7\ ^{10}C_{7} 3^{10-2(7)} x^{20-5(7)} a^7$$

    $$=-^{10}C_{7} 3^{r} x^{-15} a^7 \Rightarrow -\dfrac {40}{27}a^7 x^{-15}$$

    Coefficient of $$x^{-15}$$ is $$-\dfrac {40}{27}a^7$$
  • Question 10
    1 / -0
    If $$p$$ is a real number and if the middle term in the expansion of $$\left(\dfrac{p}{2}+2\right)^{8}$$ is $$1120$$, find $$p$$
    Solution
    Given expansion is $$\left (\dfrac {P}{2}+2\right)^8$$

    Since index is $$n=8$$, there is only one middle term i.e., $$\left (\dfrac {8}{2}+1\right)^{th}$$

    $$\Rightarrow \ 5^{th }$$. term

    $$T_5 =T_{4+1}=^8C_{4} \left(\dfrac {P}{2}\right)^{8-4} 2^4$$

    $$\Rightarrow \ 1120=^{8}C_{4} P^4 \Rightarrow \ 1120=\dfrac {8\times 7\times 6\times 5\times 4!}{4! 4\times 3\times 2\times 1} P^4$$

    $$\Rightarrow \ 1120=7\times 2\times 5\times P^4 =\dfrac {1120}{70}$$

    $$\Rightarrow \ p^4 =16 \ \Rightarrow P^2 =4 \Rightarrow P=\pm 2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now