Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    In the expansion of $$\left( 1+x \right) ^{ n }$$, The binomial coefficients of three consecutive terms are respectively 220, 495 and 795, the value 

  • Question 2
    1 / -0

    The term independent of x in the expansion of  $$\displaystyle \left ( x -\dfrac{1}{4} \right )^4\left ( x + \dfrac{1}{x} \right )^3$$

  • Question 3
    1 / -0

    If in the expansion of $$(1+x)^{20}$$,the coefficients of rth and (r+4)th terms are equal,then r is equal to

  • Question 4
    1 / -0

    If $$(1+2x+3x^2 )^{10} = a_0+a_1x+a_2x^2+\ ...\,+a_{20}x^{20}$$, then $$a_1$$ equals

  • Question 5
    1 / -0

    Let $$2.^{20}C_0 + 5. ^{20} C_1 + 8. ^{20}C_2 + ..... + 62. ^{20}C_{20}$$. then sum of this series is 

  • Question 6
    1 / -0

    Find the $$7^{th}$$ term from the end in the expansion of $$\left(2x^{2}-\dfrac{3}{2x}\right)^{8}$$

  • Question 7
    1 / -0

    Find the coefficient of $$x^{10}$$ in the expansion of $$\left(2x^{2}-\dfrac{1}{x}\right)^{20}$$

  • Question 8
    1 / -0

    The greatest term in the expansion of $$(2x + 3y)^{11}$$ when x = 9 and y = 4 is :

  • Question 9
    1 / -0

    Find the coefficient of $$x^{-15}$$ in the expansion of $$\left(3x^{2}-\dfrac{a}{3x^{3}}\right)^{10}$$

  • Question 10
    1 / -0

    If $$p$$ is a real number and if the middle term in the expansion of $$\left(\dfrac{p}{2}+2\right)^{8}$$ is $$1120$$, find $$p$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now