Self Studies

Binomial Theorem Test - 55

Result Self Studies

Binomial Theorem Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The $$7th$$ term in the expansion of $$\bigg(\dfrac{1}{2}+a\bigg)^8$$ is :
    Solution
    $$7th$$ term in the expansion of $$\bigg(\dfrac{1}{2}+a\bigg)^8$$

    $$=T_7=T_6+1$$

    $$=\,^8C_6\,\bigg(\dfrac{1}{2}\bigg)^{8-6}(a)^6$$       $$(\because T_{r+1}=\,^nC_r\,a^{n-r}\,b^r)$$

    $$=\,^8C_6\,\bigg(\dfrac{1}{2}\bigg)^2(a)^6$$
  • Question 2
    1 / -0
    The sum of the coefficients of even powers of $$x$$ in the expansion of
    $$ (1+x+x^2+x^3)^5 $$ is
    Solution
    Let $$f(x)=(1+x+x^2+x^3)\:^5$$
    $$=a_{0}+a_{1}x+a_{2}x^2+a_{3}x^3...$$ ...(i)
    $$f(1)=a_{0}+a_{1}+a_{2}...$$ ...(ii)
    $$f(-1)=a_{0}-a_{1}+a_{2}-a_{3}...$$ ...(iii)
    Adding (ii) and (iii), we get
    $$f(1)+f(-1)=2[a_{0}+a_{2}+a_{4}...]$$
    $$(1+1+1+1)^{5}+(1-1+1-1)^{5}=2[a_{0}+a_{2}+a_{4}...]$$
    $$4^{5}=2[a_{0}+a_{2}+a_{4}...]$$
    $$2^{10}=2[a_{0}+a_{2}+a_{4}...]$$
    $$2^9=a_{0}+a_{2}+a_{4}...$$
    $$512=a_{0}+a_{2}+a_{4}...$$
    Hence sum of the coefficients of even powers of $$x$$ is $$512$$.
  • Question 3
    1 / -0
    Find the middle term of the expansion of $$\left ( 3x+\frac{1}{2x} \right )^7$$
  • Question 4
    1 / -0
    Match the elements of List I with List II

     List I List II
    A) lf $$\lambda$$ be the number of terms which are integers, in the expansion of
    $$(5^{\frac16}+7^{\frac19})^{1824}$$, then $$\lambda$$ is divisible by
    P) 2
    B) lf $$\lambda$$ be the number of terms which are rational in the expansion of
    $$(5^{\frac16}+2^{\frac18})^{100}$$, then 
    $$\lambda$$ is divisible by
    Q) 3
    C) lf $$\lambda$$ be the number of terms which are irrational in the expansion of
    $$(3^{\frac14}+4^{\frac13})^{99}$$, then 
    $$\lambda$$ is divisible by
    R) 7
     S) 13 
     T) 17
    The correct option which matches all the elements correctly, is :
    Solution

    (i) $$(5^{\frac{1}{6}}+7^{\frac{1}{9}})^{1824}$$

    $$T_{r+1}=^{1824}C_r (5)^{\frac{1824-r}{6}} 7^{\frac{r}{9}}$$

    For integer terms, $$r$$ should be multiple of $$9$$.

    For $$r=18,36,54,72,.....1818$$, terms comes as integer.

    This is an A.P.

    $$1818=18+(n-1)18$$

    $$\Rightarrow n=101$$

    Also, for $$r=0$$ , we would get an integer

    So, total number of terms which gives integer values are $$101+1=102.$$

    So, $$\lambda=102$$

    So, $$\lambda$$ is divisible by $$2,3,17$$


    (ii) $$(5^{\frac{1}{6}}+2^{\frac{1}{8}})^{1824}$$

    $$T_{r+1}=^{100}C_r (5)^{\frac{100-r}{6}}2^{\frac{r}{8}}$$

    For rational terms, $$r$$ should be multiple of $$8$$.

    For $$r=16,40,64,88$$, terms comes as rational.

    So, number of rational terms are $$4$$.

    So, $$\lambda=4$$

    which is divisble by $$2$$.


    (iii) $$(3^{\frac{1}{4}}+4^{\frac{1}{3}})^{99}$$

    $$T_{r+1}=^{99}C_r (3)^{\frac{99-r}{64}}4^{\frac{r}{3}}$$

    For rational terms, $$r$$ should be multiple of $$3$$.

    For $$r=3,15,27,.....97$$, terms comes as rational.

    This is an AP

    $$97=3+(n-1)12$$

    $$\Rightarrow n=8$$

    For $$r=99$$ also, there is a rational value 

    So, number of rational terms are $$8+1=9$$

    Now, number of irrational terms = total number of terms -rational number of terms

    $$=99+1-9=91$$

    So, $$\lambda=91$$

    which is divisble by $$7,13$$.


    Hence, option A is the correct answer.

  • Question 5
    1 / -0
    If $$S$$ be the sum of the coefficients in the expansion of $$(ax+by+-cz)^{n}$$ where $$a, b, c$$ are lengths of the sides of a triangle, then $$\lim_{n\rightarrow \infty }\dfrac{S}{(S^{1/n}+1)^{n}}$$ is
    Solution
    $$S=(a+b-c)^{n}$$
    $$\displaystyle \lim_{n\rightarrow \infty

    }\dfrac{S}{\left ( S^{1/n}+1 \right )^{n}}$$ = $$\displaystyle

    \lim_{n\rightarrow \infty }\left ( \dfrac{a+b-c}{a+b-c+1} \right )^{n}$$
    $$\displaystyle =\lim_{n\rightarrow \infty } \left ( \dfrac{k}{k+1} \right )^{n} = L$$ (say)
    Where $$k = a + b - c$$
    Now In $$\Delta ABC   a + b > c$$  $$\Rightarrow 0< \dfrac{k}{k+1}< 1 \therefore L = 0$$
  • Question 6
    1 / -0
    The value of the expression $$\displaystyle \frac{C_1}{C_0}+2\frac{C_2}{C_1}+3\frac{C_3}{C_2}+\ldots\ldots\ldots +n\frac{C_n}{C_{n-1}}$$ is
    Solution
    Given:
    $$\dfrac{C_1}{C_0} + 2\dfrac{C_2}{C_1}+3\dfrac{C_3}{C_2} +\cdots+n\dfrac{C_n}{C_{n-1}}$$

    $$r^{th}$$ term of the above expression is
    $$T_r = r\dfrac{C_r}{C_{r-1}} = r\dfrac{n-r+1}{r} = n-r+1$$

    Now,
    $$\displaystyle\sum_{r=1}^nT_r = \sum_{r=1}^n (n-r+1)$$ 

    $$=n^2-\dfrac{n(n+1)}{2} + n$$

    $$=\dfrac{n(n+1)}2$$
  • Question 7
    1 / -0
    Arrange the values of $$n$$ in ascending order
    A : If the term independent of $$x$$ in the expansion of $$\left(\displaystyle \sqrt{x}-\frac{n}{x^{2}}\right)^{10}$$ is $$405$$
    B : If the fourth term in the expansion of $$\left(\displaystyle \frac{1}{n}+n^{\log_{n}10}\right)^{5}$$ is $$1000$$, ( $$ n< 10 $$)
    C : In the  binomial expansion of $$(1+x)^{n}$$ the coefficients of  $$5^{\mathrm{t}\mathrm{h}},\ 6^{\mathrm{t}\mathrm{h}}$$ and $$7^{\mathrm{t}\mathrm{h}}$$ terms are in A.P.

    Solution
    A: Given: $$(\sqrt{x}-nx^{-2})^{10}$$

    $$T_{r+1}=(-1)^{r}\:^{10} C_{r} x^{(5-{5r}/{2})} n^{r}$$    ...(1)

    Term independent of $$x$$ implies
    $$5-\dfrac{5r}{2}=0$$

    Thus $$r=2$$
    Substituting in equation (1), we get
    $$T_{3}=\:^{10}C_{2}n^{2}=405$$
    $$\Rightarrow 45n^{2}=405$$
    $$\Rightarrow n^{2}=9$$
    $$\Rightarrow n=3$$ ($$n$$ is $$\neq -3$$ as $$n$$ is a positive integer)

    B: Given: $$(n^{-1}+n^{log_{n}10})^{5}$$
    $$=(n^{-1}+10)^{5}$$
    $$T_{r+1}=\:^{5}C_{r}n^{5-r}10^{r}$$     ...(2)
    It is given that the third term is $$1000$$
    Substituting in equation (2), we get
    $$T_{4}=\:^{5}C_{2}n^{-2}10^{3}=1000$$
    $$\Rightarrow 10(n^{-2}1000)=1000$$
    $$\Rightarrow n^{-2}=10$$
    $$\Rightarrow n=\dfrac{1}{\sqrt{10}}$$

    C: For the terms to be in arithmetic progression
    $$(n-2r)^{2}=n+2$$    ...(3)
    Let us consider $$\:^{n}C_{r-1},\:^{n}C_{r},\:^{n}C_{r+1}$$ be in A.P.
    Hence, $$T_{r},T_{r+1},T_{r+2}$$ are in A.P.
    Here it is given that, the $$5^{th}, 6^{th}$$ and $$7^{th}$$ terms are in A.P.
    Hence, $$r=5$$
    Substituting in equation (3), we get
    $$(n-10)^{2}=n+2$$
    $$\Rightarrow n^{2}-21n+98=0$$
    $$\Rightarrow(n-7)(n-14)=0$$
    Hence, $$n=7, 14$$
    Hence, the values of $$n$$ in ascending order is B,A,C.

    Option B.
  • Question 8
    1 / -0
    If the fourth term in the expansion of $$\displaystyle \left ( \sqrt{x^{\left ( \frac{1}{log x+1} \right )}}+x^{\frac{1}{12}} \right )^6$$ is equal to 200 and x > 1, then x is equal to
    Solution
    $${ \left( a+b \right)  }^{ 6 } = { ^{ 6 }{ C } }_{ 0 }{ a }^{ 6 }+{ ^{ 6 }{ C } }_{ 1 }{ a }^{ 5 }b+{ ^{ 6 }{ C } }_{ 2 }{ a }^{ 4 }{ b }^{ 2 }+{ ^{ 6 }{ C } }_{ 3 }{ a }^{ 5 }{ b }^{ 3 }..........{ ^{ 6 }{ C } }_{ 6 }{ b }^{ 6 }$$
                                                                                  $$\hookrightarrow$$ 4th term
    $${ t }_{ 4 }=200$$
    $$\Rightarrow { ^{ 6 }{ C } }_{ 3 } { \left( \sqrt { { x }^{ { 1 }/{ ㏒x+1 }  } }  \right)  }^{ 3 }{ \left( { x }^{ { 1 }/{ 12 }  } \right)  }^{ 3 } = 200$$
    $$\Rightarrow20 \times \left[ { x }^{ { 3 }/{ 2(logx+1) }  } \right] \left[ { x }^{  { 1 }/{ 4 }  } \right] = 200$$
    $$\Rightarrow{ x }^{ { \left[ { 3 }/{ 2(logx+1) }+{ 1 }/{ 4 } \right]  } }=10$$
    Taking log to base $$10$$ on both sides:
    $$\left[ \dfrac { 3 }{ 2(logx+1) } +\dfrac { 1 }{ 4 }  \right] { log }_{ 10 }x$$ = $$ { log }_{ 10 }10$$
    $$\Rightarrow $$  $$\left[ \dfrac { 6+(1+logx) }{ 4(1+logx) }  \right] logx = 1$$
    $$\Rightarrow  (7+logx) logx = 4 + 4 logx$$
    $$\Rightarrow{ log }^{ 2 }x + 7 logx = 4 + 4 logx$$
    $$\Rightarrow{ log }^{ 2 }x + 3 logx - 4 = 0$$
    $$\Rightarrow(logx + 4 ) (logx - 1 ) = 0$$
    $$\Rightarrow x = { 10 }^{ -4 }$$ or $$x = { 10 }^{ 1 }$$
    Given that, $$x >1$$
    $$\Rightarrow$$   $$ x = 10$$
    Hence the answer is $$10.$$
  • Question 9
    1 / -0
    The coefficient of $$x^r[0 \le r \le n-1]$$ in the expression of $$(x + 2)^{n-1} + (x+2)^{n-2} .(x+1) + (x+2)^{n-3}. (x+1)^2+...+(x+1)^{n-1}$$ is
    Solution
    Given expression is equal to $$\sum _{ p=1 }^{ n }{ { (x+3) }^{ (n-p) }\times { (x+2) }^{ (p-1) } }$$ 

    Which is equal to $$ { (x+3) }^{ (n-1) }\times (\sum _{ p=1 }^{ n }{ { (\dfrac { (x+2) }{ (x+3) } ) }^{ (p-1) }) } = { (x+3) }^{ n }-{ (x+2) }^{ n }$$

    So,coefficient of $${ x }^{ r } \space is  \space^n{ C }_{ r }\times ({ 3 }^{ (n-r) }-{ 2 }^{ (n-r) })$$
  • Question 10
    1 / -0
    Find the sum of the series
    $$3.{ _{  }^{ n }{ C } }_{ 0 }-8.{ _{  }^{ n }{ C } }_{ 1 }+13._{  }^{ n }{ { C }_{ 2 } }-18.{ _{  }^{ n }{ { C }_{ 3 } } }+\ldots+(n+1)\quad terms$$
    Solution
    Let $$n=2$$
    Hence the above expression is reduced to
    $$3(1)-8(2)+13(1)$$
    $$=16-16=0$$
    Let $$n=3$$
    $$3(1)-8(3)+13(3)-18(1)$$
    $$=42-42=0$$
    Hence the sum of the series for $$n>1$$ is $$0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now