Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    The $$7th$$ term in the expansion of $$\bigg(\dfrac{1}{2}+a\bigg)^8$$ is :

  • Question 2
    1 / -0

    The sum of the coefficients of even powers of $$x$$ in the expansion of
    $$ (1+x+x^2+x^3)^5 $$ is

  • Question 3
    1 / -0

    Find the middle term of the expansion of $$\left ( 3x+\frac{1}{2x} \right )^7$$

  • Question 4
    1 / -0

    Match the elements of List I with List II

     List I List II
    A) lf $$\lambda$$ be the number of terms which are integers, in the expansion of
    $$(5^{\frac16}+7^{\frac19})^{1824}$$, then $$\lambda$$ is divisible by
    P) 2
    B) lf $$\lambda$$ be the number of terms which are rational in the expansion of
    $$(5^{\frac16}+2^{\frac18})^{100}$$, then 
    $$\lambda$$ is divisible by
    Q) 3
    C) lf $$\lambda$$ be the number of terms which are irrational in the expansion of
    $$(3^{\frac14}+4^{\frac13})^{99}$$, then 
    $$\lambda$$ is divisible by
    R) 7
     S) 13 
     T) 17
    The correct option which matches all the elements correctly, is :

  • Question 5
    1 / -0

    If $$S$$ be the sum of the coefficients in the expansion of $$(ax+by+-cz)^{n}$$ where $$a, b, c$$ are lengths of the sides of a triangle, then $$\lim_{n\rightarrow \infty }\dfrac{S}{(S^{1/n}+1)^{n}}$$ is

  • Question 6
    1 / -0

    The value of the expression $$\displaystyle \frac{C_1}{C_0}+2\frac{C_2}{C_1}+3\frac{C_3}{C_2}+\ldots\ldots\ldots +n\frac{C_n}{C_{n-1}}$$ is

  • Question 7
    1 / -0

    Arrange the values of $$n$$ in ascending order
    A : If the term independent of $$x$$ in the expansion of $$\left(\displaystyle \sqrt{x}-\frac{n}{x^{2}}\right)^{10}$$ is $$405$$
    B : If the fourth term in the expansion of $$\left(\displaystyle \frac{1}{n}+n^{\log_{n}10}\right)^{5}$$ is $$1000$$, ( $$ n< 10 $$)
    C : In the  binomial expansion of $$(1+x)^{n}$$ the coefficients of  $$5^{\mathrm{t}\mathrm{h}},\ 6^{\mathrm{t}\mathrm{h}}$$ and $$7^{\mathrm{t}\mathrm{h}}$$ terms are in A.P.

  • Question 8
    1 / -0

    If the fourth term in the expansion of $$\displaystyle \left ( \sqrt{x^{\left ( \frac{1}{log x+1} \right )}}+x^{\frac{1}{12}} \right )^6$$ is equal to 200 and x > 1, then x is equal to

  • Question 9
    1 / -0

    The coefficient of $$x^r[0 \le r \le n-1]$$ in the expression of $$(x + 2)^{n-1} + (x+2)^{n-2} .(x+1) + (x+2)^{n-3}. (x+1)^2+...+(x+1)^{n-1}$$ is

  • Question 10
    1 / -0

    Find the sum of the series
    $$3.{ _{  }^{ n }{ C } }_{ 0 }-8.{ _{  }^{ n }{ C } }_{ 1 }+13._{  }^{ n }{ { C }_{ 2 } }-18.{ _{  }^{ n }{ { C }_{ 3 } } }+\ldots+(n+1)\quad terms$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now