Self Studies

Binomial Theorem Test - 61

Result Self Studies

Binomial Theorem Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\text{5}^{th}$$ term from the end in the expansion of $${\left( {\frac{{{x^3}}}{2} - \frac{2}{{{x^2}}}} \right)^{12}}$$ is :
    Solution

  • Question 2
    1 / -0
    If the $$rth$$ term in the expansion of $$\left(\dfrac{x}{3}-\dfrac{2}{x^{2}}\right)^{10}$$ contains $$x^{4}$$ then $$r$$ is equal to
    Solution

  • Question 3
    1 / -0
    The sum of the binomial coefficients in the expansion of $${ \left( { x }^{ -3/4 }+a{ x }^{ 5/4 } \right)  }^{ n }$$ lies between $$200$$ and $$400$$ and the term independent of $$x$$ equals $$448$$. The value of $$a$$ is
    Solution
    $$\left(x^{-\dfrac{3}{4}}+ax^{5/4}\right)^n$$ $$={^{n}C_0}\left(x^{-3/4}\right)^n+{^{n}C_1}(x^{-3/4})^{n-1}(ax^{5/4})^1.......+{^{n}C_n}(ax^{5/4})^n$$

    Put $$x=1$$

    $$(1+a)^n={^{n}C_0}+{^{n}C_1}a+{^{n}C_2}a^2+......+{^{n}C_n}a^n$$

    Put $$a=1$$

    $$2^n={^{n}C_0}+{^{n}C_1}+{^{n}C_2}+........+{^{n}C_n}$$

    $$200 < 2^n < 400$$

    $$[\because 2^8=256]$$

    $$n=8$$

    $$(x^{-3/4}+ax^{5/4})^8$$

    $$T_{r+1}={^8C_r}(x^{-3/4})^{8-r}(ax^{5/4})^r$$

    $$\Rightarrow T_{3+1}={^8C_3}a^3=448$$

    $$T_4=^8C_3a^3=448$$

    $$\Rightarrow \dfrac{8\times 7\times 6}{3\times 2}=a^3=448\Rightarrow a^3=8$$

    $$a=2$$

    $$\begin{bmatrix} \because \dfrac{-3}{4}(8-r)+\dfrac{5r}{4}=0\\ -6+\dfrac{3r}{4}+\dfrac{5r}{4}=0\\ -6+2r=0\\ r=3\end{bmatrix}$$.
  • Question 4
    1 / -0
    The sum of the series
    $$\dfrac {2\left(\dfrac {n}{2}\right)!\left(\dfrac {n}{2}\right)!}{(n!)}[C^{2}_{0}-2C^{2}_{1}+3C^{2}_{2}...+(-1)^{n}(n+1)C^{2}_{n}]$$
    where $$n$$ is an even positive integer, is equal to
    Solution

  • Question 5
    1 / -0
    Sum of coefficients of $${ x }^{ 2r }$$, $$r= 1,2,3,$$....... in $$(1+x{ ) }^{ n }$$ is
    Solution

  • Question 6
    1 / -0
    Coefficient of $$x^{n}$$ in expansion of $$\dfrac{(1+2x)^{2}}{(1-x)^{3}}$$ is
  • Question 7
    1 / -0
    $$\begin{array} { l } { \text { Assertion } ( \mathrm { A } ) : \text { The expansion of } ( 1 + x ) ^ { n } = } \\ { C _ { 0 } + C _ { 1 } x + C _ { 2 } x ^ { 2 } + \ldots + C _ { n } x ^ { n } } \\ { \text { Reason (R): If } x = - 1 , \text { then the above expansion is } } \\ { \text { zero } } \end{array}$$
    Solution
    We Know that Assertion is nothing but the standard binomial expansion of 

    $$(1+x)^n$$$$=C_{0}+C_{1}X+C_{2}X^2+ \dots +C_{n}x^n$$  

    So if $$x=-1$$ then 

    $$(1+(-1))^n=(1-1)^n=0$$

    $$Ans:$$ $$Opt:[B]$$
  • Question 8
    1 / -0
    The coefficient of $$x^{99}$$ in $$(x+1)(x+3)(x+5).....(x+199)$$ is
    Solution

    $$\text x^{99} \text { in }(x+1)(x+3)(x+5) \ldots(x+199) \\$$

    $$\text { Multiplying }(x+1)(x+3) \\$$
    $$\text { will give } x^{2}+(1+3) x+(1)(3) \\$$
    $$\text { so coefficient } x \text { is }(1+3) \\$$
    $$\Rightarrow \operatorname{2n}(x+1)(x+3)(x+5)$$

    So coefficient of $$x^{2}=(1+3+5)$$

    So coefficient of $$x^{n}$$ in $$(n+1)$$ terms will be sum of coefficients

    So we can say it will be sum of roots of equation

    So coefficient of $$x^{99}$$ will be roots in 100 terms

    $$1+3+5+\ldots+199$$
  • Question 9
    1 / -0
    The middle term in the expansion of $${\left(3x-\dfrac{{x}^{3}}{6}\right)}^{9}$$ is 
    Solution

  • Question 10
    1 / -0
    The sum of the co-efficient of all odd degree terms in the expansion of $$\left( x + \sqrt { x ^ { 3 } - 1 } \right) ^ { 5 } + \left( x - \sqrt { x ^ { 3 } - 1 } \right)$$ 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now