Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    $$\text{5}^{th}$$ term from the end in the expansion of $${\left( {\frac{{{x^3}}}{2} - \frac{2}{{{x^2}}}} \right)^{12}}$$ is :

  • Question 2
    1 / -0

    If the $$rth$$ term in the expansion of $$\left(\dfrac{x}{3}-\dfrac{2}{x^{2}}\right)^{10}$$ contains $$x^{4}$$ then $$r$$ is equal to

  • Question 3
    1 / -0

    The sum of the binomial coefficients in the expansion of $${ \left( { x }^{ -3/4 }+a{ x }^{ 5/4 } \right)  }^{ n }$$ lies between $$200$$ and $$400$$ and the term independent of $$x$$ equals $$448$$. The value of $$a$$ is

  • Question 4
    1 / -0

    The sum of the series
    $$\dfrac {2\left(\dfrac {n}{2}\right)!\left(\dfrac {n}{2}\right)!}{(n!)}[C^{2}_{0}-2C^{2}_{1}+3C^{2}_{2}...+(-1)^{n}(n+1)C^{2}_{n}]$$
    where $$n$$ is an even positive integer, is equal to

  • Question 5
    1 / -0

    Sum of coefficients of $${ x }^{ 2r }$$, $$r= 1,2,3,$$....... in $$(1+x{ ) }^{ n }$$ is

  • Question 6
    1 / -0

    Coefficient of $$x^{n}$$ in expansion of $$\dfrac{(1+2x)^{2}}{(1-x)^{3}}$$ is

  • Question 7
    1 / -0

    $$\begin{array} { l } { \text { Assertion } ( \mathrm { A } ) : \text { The expansion of } ( 1 + x ) ^ { n } = } \\ { C _ { 0 } + C _ { 1 } x + C _ { 2 } x ^ { 2 } + \ldots + C _ { n } x ^ { n } } \\ { \text { Reason (R): If } x = - 1 , \text { then the above expansion is } } \\ { \text { zero } } \end{array}$$

  • Question 8
    1 / -0

    The coefficient of $$x^{99}$$ in $$(x+1)(x+3)(x+5).....(x+199)$$ is

  • Question 9
    1 / -0

    The middle term in the expansion of $${\left(3x-\dfrac{{x}^{3}}{6}\right)}^{9}$$ is 

  • Question 10
    1 / -0

    The sum of the co-efficient of all odd degree terms in the expansion of $$\left( x + \sqrt { x ^ { 3 } - 1 } \right) ^ { 5 } + \left( x - \sqrt { x ^ { 3 } - 1 } \right)$$ 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now