Self Studies

Binomial Theorem Test - 71

Result Self Studies

Binomial Theorem Test - 71
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the expansion of $${\left( {3 - \sqrt {\frac{{17}}{4} + 3\sqrt 2 } } \right)^{15}}$$ the 11th term is a
    Solution

  • Question 2
    1 / -0
    In the expansion of $$\displaystyle \left ( 3 -\sqrt{\dfrac{17}{4} + 3\sqrt{2}} \right )^{15}$$  the $$11^{th}$$ term is a :
    Solution

  • Question 3
    1 / -0
    The coefficient of $${ x }^{ 4 }$$ in the expansion of $${ (1+x+{ x }^{ 2 }+x }^{ 3 })^{ 4 }$$ is
    Solution

    $$  {\textbf{Step - 1: Factorise the polynomial }} $$

                     $$  {\left( {1 + x + {x^2} + {x^3}} \right)^4}\; $$

                     $$   = {\left[ {1\left( {1 + x} \right) + {x^2}\left( {1 + x} \right)} \right]^4} $$

                     $$   = {\left( {1 + x} \right)^4}{\left( {1 + {x^2}} \right)^4} $$

    $$  {\textbf{Step - 2: Calculation}} $$

                     $$  {\left( {1 + x + {x^2} + {x^3}} \right)^4} = {\text{ }}{\left( {1 + x} \right)^4}{\left( {1 + {x^2}} \right)^4} $$

                     $$  {\text{Coefficient of }}{x^{4\;}} $$

                     $$   \Rightarrow {\;^n}{C_0}^n{C_2}{ + ^{\;n}}{C_2}{.^{\;n}}{C_1}{ + ^n}{C_2}{.^n}{C_4} $$

                     $$  { = ^n}{C_4}{ + ^n}{C_2}{ + ^n}{C_4}{.^n}{C_2} $$

    $$  {{\textbf{ Hence, the correct answer is option C}}{\text{.}}} $$

  • Question 4
    1 / -0
    The coefficient of $$x^n$$ in the expansion of $$\frac{1}{{(1 - x)(3 - x)}}$$ is 
    Solution

  • Question 5
    1 / -0
    The sum of the coefficients in the expansion of $${\left( {1 + x3{x^2}} \right)^{2163}}$$ will be
    Solution

  • Question 6
    1 / -0
    The co-efficient of $$x^5$$ in the expression of $${\left( {1 + x} \right)^{21}} + {\left( {1 + x} \right)^{22}} + .......... + {\left( {1 + x} \right)^{30}}$$ is :
    Solution

  • Question 7
    1 / -0
    The coefficient of $${x^9}$$ in $$\left( {x - 1} \right)\left( {x - 4} \right)\left( {x - 9} \right)......\left( {x - 100} \right)$$ is 
    Solution

  • Question 8
    1 / -0
    If the third term in the binomial expansion of $$(1 + x)^m$$ is $$-\frac{1}{8}x^2$$, the the rational value of m is-
  • Question 9
    1 / -0
    If $${C_0},{C_1},{C_2},.....,{C_n}$$ are the binomial coefficients, then  $$2{C_1}+{2^3}{C_3}+{2^5}{C_5} + ...$$ equals
    Solution
    We have,
    $$(1+x)^n =C_0+C_1x +C_2x^2 +C_3x^3+....+C_n x^n\quad...(1)\ \ \ \text{ and }\\(1-x)^n =C_0-C_1x+C_2x^2-C_3x^3+.....+(-1)^n \cdot C_n x^n\quad...(2)$$


    Subtracting equation $$(2)$$ from $$(1)$$
    $$\Rightarrow (1+x)^n -(1-x)^n =2[C_1x+C_3x^3 +C_5x^5+....]$$
    $$\Rightarrow \dfrac{1}{2}[(1+x)^n -(1-x)^n ] =C_1x+C_3x^3+C_5x^5+.....$$

    Putting $$x=2$$, we get,
    $$2C_1 +2^3 C_3+ 2^5 C_5 +...=\dfrac{3^n -(-1)^n}{2}$$

    Hence, the correct answer is option (B).
  • Question 10
    1 / -0
    The sum of the coefficient in the expansion of $$(1+5x-7x^2)^{3546}$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now