Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    In the expansion of $${\left( {3 - \sqrt {\frac{{17}}{4} + 3\sqrt 2 } } \right)^{15}}$$ the 11th term is a

  • Question 2
    1 / -0

    In the expansion of $$\displaystyle \left ( 3 -\sqrt{\dfrac{17}{4} + 3\sqrt{2}} \right )^{15}$$  the $$11^{th}$$ term is a :

  • Question 3
    1 / -0

    The coefficient of $${ x }^{ 4 }$$ in the expansion of $${ (1+x+{ x }^{ 2 }+x }^{ 3 })^{ 4 }$$ is

  • Question 4
    1 / -0

    The coefficient of $$x^n$$ in the expansion of $$\frac{1}{{(1 - x)(3 - x)}}$$ is 

  • Question 5
    1 / -0

    The sum of the coefficients in the expansion of $${\left( {1 + x3{x^2}} \right)^{2163}}$$ will be

  • Question 6
    1 / -0

    The co-efficient of $$x^5$$ in the expression of $${\left( {1 + x} \right)^{21}} + {\left( {1 + x} \right)^{22}} + .......... + {\left( {1 + x} \right)^{30}}$$ is :

  • Question 7
    1 / -0

    The coefficient of $${x^9}$$ in $$\left( {x - 1} \right)\left( {x - 4} \right)\left( {x - 9} \right)......\left( {x - 100} \right)$$ is 

  • Question 8
    1 / -0

    If the third term in the binomial expansion of $$(1 + x)^m$$ is $$-\frac{1}{8}x^2$$, the the rational value of m is-

  • Question 9
    1 / -0

    If $${C_0},{C_1},{C_2},.....,{C_n}$$ are the binomial coefficients, then  $$2{C_1}+{2^3}{C_3}+{2^5}{C_5} + ...$$ equals

  • Question 10
    1 / -0

    The sum of the coefficient in the expansion of $$(1+5x-7x^2)^{3546}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now