Self Studies

Sequences and Series Test - 23

Result Self Studies

Sequences and Series Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Value of $$9 + 99 + 999 + .... $$ upto $$n$$ terms is
    Solution
    Given, $$9 + 99 + 999 + .... $$ upto $$ n $$ terms
    we can write this series in this form
       $$s=(10-1)+(100-1)+(1000-1).......$$ up to $$n$$ terms.
        $$= [(10+100+1000+......)+(-1-1-1-.......\text {up to n terms})]$$
        $$= [(10+10^2+10^3+.....\text {up to n terms})-n]$$                ........(i)
    sum of n terms of GP. $$=\dfrac {a(r^n-1)}{r-1}$$, where $$a$$ is first term and $$r$$ is the common ratio of the GP.
    $$\text {We have the GP }  10+10^2+10^3+.... \text {up to n terms} $$, here first term $$a=10$$ and  common ratio $$r=10$$
    So,
    $$10+10^2+10^3+...... \text {n terms}= \dfrac {10(10^n-1)}{10-1} = \dfrac {10^{n+1}-10}{9}$$On Substituting$$s=10+10^2+10^3+...... \text {n terms}=  \dfrac {10^{n+1}-10}{9}$$ in equation (i). we get,
        $$ =\dfrac {10^{n+1}-10}{9}-n = \dfrac {10^{n+1}-9n-10}{9} $$
      $$\Rightarrow  9+99+999+.......\text {up to n terms} = \dfrac {10^{n+1}-9n-10}{9} $$
    Option D is correct.
  • Question 2
    1 / -0
    The sum of the series $$4 + 8 + 16 + 32 + .......$$. till $$10$$ terms is
    Solution
    Let $$S_{10}=4 + 8 + 16 + 32 + ........ $$ upto $$10 $$ terms
                 $$=4(1+2+4+8+.........$$.upto $$10$$ terms
    Clearly, $$1+2+2^2+2^3+...$$ is an GP with first term $$=1$$ and common ratio $$=2$$.
    $$\therefore S_{10}=4[\displaystyle \frac{1(2^{10}-1)}{2-1}]=4(2^{10}-1)$$
    Thus the sum of the given series is $$4(2^{10}-1)$$
  • Question 3
    1 / -0
    $$\displaystyle \sum _{ p=1 }^{ 32 }{ \left( 3p+2 \right) { \left[ \sum _{ q=1 }^{ 10 }{ \left( \sin { \frac { 2q\pi  }{ 11 }  } -i\cos { \frac { 2q\pi  }{ 11 }  }  \right)  }  \right]  }^{ p } } =$$
    Solution
    $$\displaystyle\sum _{ q=1 }^{ 10 }{ \left( \sin { \frac { 2q\pi  }{ 11 } -i } \sin { \frac { 2q\pi  }{ 11 }  }  \right)  } $$
    $$\displaystyle=\left\{ \sin { \frac { 2\pi  }{ 11 }  } +\sin { \frac { 4\pi  }{ 11 }  } +...+10 \right\}- i\left\{ \cos { \frac { 2\pi  }{ 11 }  } +\cos { \frac { 4\pi  }{ 11 }  } +...+10 \right\} $$
    $$\displaystyle=\frac { \sin { \left( \frac { 2\pi  }{ 11 } +\frac { 9\pi  }{ 11 }  \right)  } \sin { \frac { 10\pi  }{ 11 }  }  }{ \sin { \frac { \pi  }{ 11 }  }  } -i\frac { \cos { \left( \frac { 2\pi  }{ 11 } +\frac { 9\pi  }{ 11 }  \right) \sin { \frac { 10\pi  }{ 11 }  }  }  }{ \sin { \frac { \pi  }{ 11 }  }  } $$$$=0-i\left( -1 \right) =i$$     ...(1)
    $$\displaystyle\therefore S=\sum _{ p=1 }^{ 32 }{ \left( 3q+2 \right) { \left[ \sum _{ q=1 }^{ 10 }{ \left( \sin { \frac { 2q\pi  }{ 11 } -i } \cos { \frac { 2q\pi  }{ 11 }  }  \right)  }  \right]  }^{ p } } $$
    $$\displaystyle=\sum _{ p=1 }^{ 32 }{ \left( 3p+2 \right) { i }^{ p } } =3\sum _{ p=1 }^{ 32 }{ p } { i }^{ p }+2\sum _{ p=1 }^{ 32 }{ { i }^{ p } } =3A+2B$$     ...(2)
    Now, $$\displaystyle A=i+2{ i }^{ 2 }+3{ i }^{ 3 }+...+32{ i }^{ 32 }$$$$\displaystyle \Rightarrow Ai={ i }^{ 2 }+2{ i }^{ 3 }+...+31{ i }^{ 32 }+32{ i }^{ 33 }$$
    $$\displaystyle\Rightarrow A\left( 1-i \right) =i+{ i }^{ 2 }+...+{ i }^{ 32 }-32{ i }^{ 33 }$$$$\displaystyle =\frac { { i }^{ 32 }-1 }{ i-1 } -32i=-32i\quad \left[ \because { i }^{ 32 }=1 \right] $$
    $$\displaystyle\therefore A=\frac { -32i }{ 1-i } =\frac { 32\left( 1+i \right)  }{ 2 } =16\left( 1-i \right) $$    ...(3)
    and, $$\displaystyle B=i+{ i }^{ 2 }+...+{ i }^{ 32 }=0$$   ...(4)
    Hence, $$\displaystyle S=3\times 16\left( 1-i \right) =48\left( 1-i \right) .$$
  • Question 4
    1 / -0
    Find the sum the infinite G.P.:
    $$1\, +\, \displaystyle {\frac{1}{3}\, +\, \frac{1}{9}\, +\, \frac{1}{27}\, +\, .......}$$
    Solution
    Formula used: Sum of infinite GP
    $$S_\infty=a+ar+ar^2+ar^3+...=\dfrac{a}{1-r}$$, where $$|r|<1$$
    Given, $$1\, +\, \displaystyle {\frac{1}{3}\, +\, \frac{1}{9}\, +\, \frac{1}{27}\, +\, .......}$$
    Clearly, it is a GP with first term $$a=1$$ and common difference $$d=\frac13$$
    $$\therefore1\, +\, \displaystyle {\frac{1}{3}\, +\, \frac{1}{9}\, +\, \frac{1}{27}\, +\, .......}=\frac{1}{1-\frac13}=\frac32$$
    Hence, option B is correct.
  • Question 5
    1 / -0
    Evaluate $$7 + 77 + 777 + .............$$ upto $$n$$ terms.
    Solution
    Let $$S=7+77+777+........+ $$ up  to  $$n$$  terms 
    $$\Rightarrow \dfrac{7}{9}\left [ 9+99+999+..... \right ]$$

    $$\Rightarrow \dfrac{7}{9}\left [\left (10-1  \right )+\left (10^2-1  \right )+\left (10^3+1  \right )+........up\quad  to\quad  n\quad  terms  \right ] $$

    $$\Rightarrow \dfrac{7}{9}\left [10+10^2+10^3+......+10^n-n  \right ]$$

    $$\Rightarrow \dfrac{7}{9}\left [ 10\frac{10^{n}-1}{9}-n \right ]$$

    $$\Rightarrow \dfrac{7}{81}\left [ 10^{n+1}-9n-10 \right ]$$
  • Question 6
    1 / -0
    For $$\frac {2^2+4^2+6^2+...+(2n)^2}{1^2+3^2+5^2+...+(2n-1)^2}$$ to exceed 1.01, the maximum value of n is
    Solution
    $$\frac {2^2[1^2+2^2+...+n^2]}{[1^2+3^2+5^2+...+(2n-1)^2]}$$
    $$1^2+2^2+3^2+....+(2n)^2=\frac {2n(2n+1)(4n+1)}{6}$$
    $$[1^2+3^2....+(2n-1)^2+2^2[1^2+2^n.....+n^2]$$
    $$=\frac {2n(2n+1)(4n+1)}{6}$$
    $$S+4\frac {n(n+1)(2nn+1)}{6}=\frac {2n(2n+1)(4n+1)}{6}$$
    $$S+\frac {2n(2n+1)(4n+1)}{6}-\frac {4n(n+1)(2n+1)}{6}$$
    $$=2n\left (\frac {2n+1}{6}\right )[4n+1-2n-2]$$
    $$=\frac {2n(2n+1)(2n-1)}{6}$$
    $$Ratio =\frac {4n(n+1)(2n+1)}{6}\times \frac {6}{2n(2n+1)(2n-1)}=\frac {2n+2}{2n-1}$$
    $$\frac {2n+2}{2n-1} > \frac {101}{100}$$
    $$200n+200 > 202 n-101$$
    $$2n < 301$$
    $$n < \frac {301}{2}\Rightarrow $$ maximum value $$=150$$
  • Question 7
    1 / -0
    In  the following question, the numbers/letters are arranged based on some pattern or principle.Choose the correct answer for the term marked by the symbol (?) 

    Solution

  • Question 8
    1 / -0
    The sum of 'n' terms of series $$1^2+(1^2+2^2)+(1^2+ 2^2+ 3^2)+(1^2+2^2+ 3^2+4^2)+ .......$$ will be
    Solution
    The given series is $${ 1 }^{ 2 }+({ 1 }^{ 2 }+2^{ 2 })+({ 1 }^{ 2 }+2^{ 2 }+3^{ 2 })+({ 1 }^{ 2 }+2^{ 2 }+3^{ 2 }+4^{ 2 })+.....$$

    $${ a }_{ n }=({ 1 }^{ 2 }+2^{ 2 }+3^{ 2 }+.......+n^{ 2 })$$

    $$=\dfrac { n(n+1)(2n+1) }{ 6 } \\ =\dfrac { n(2n^{ 2 }+3n+1) }{ 6 } \\ =\dfrac { 2n^{ 3 }+3n^{ 2 }+n }{ 6 } \\ =\dfrac { 1 }{ 3 } n^{ 3 }+\dfrac { 1 }{ 2 } n^{ 2 }+\dfrac { 1 }{ 6 } n$$

    Therefore, we have:

    $${ S }_{ n }=\sum _{ k=1 }^{ n }{ { a }_{ k } } \\ =\sum _{ k=1 }^{ n }{ \left( \dfrac { 1 }{ 3 } k^{ 3 }+\dfrac { 1 }{ 2 } k^{ 2 }+\dfrac { 1 }{ 6 } k \right)  } \\ =\dfrac { 1 }{ 3 } \sum _{ k=1 }^{ n }{ k^{ 3 } } +\dfrac { 1 }{ 2 } \sum _{ k=1 }^{ n }{ k^{ 2 } } +\dfrac { 1 }{ 6 } \sum _{ k=1 }^{ n }{ k } \\ =\dfrac { 1 }{ 3 } \times \dfrac { n^{ 2 }+(n+1)^{ 2 } }{ 2^{ 2 } } +\dfrac { 1 }{ 2 } \times \dfrac { n(n+1)(2n+1) }{ 6 } +\dfrac { 1 }{ 6 } \times \dfrac { n(n+1) }{ 2 }$$
    $$=\dfrac { n(n+1) }{ 6 } \left[ \dfrac { n(n+1) }{ 2 } +\dfrac { (2n+1) }{ 2 } +\dfrac { 1 }{ 2 }  \right] \\ =\dfrac { n(n+1) }{ 6 } \left[ \dfrac { n^{ 2 }+n+2n+1+1 }{ 2 }  \right] \\ =\dfrac { n(n+1) }{ 6 } \left[ \dfrac { n(n+1)+2(n+1) }{ 2 }  \right] \\ =\dfrac { n(n+1) }{ 6 } \left[ \dfrac { (n+1)(n+2) }{ 2 }  \right] \\ =\dfrac { n(n+1)^{ 2 }(n+2) }{ 12 }$$

    Hence, the sum is $$\dfrac { n(n+1)^{ 2 }(n+2) }{ 12 }$$.
  • Question 9
    1 / -0
    $$11, 26, 56, 101, 161, .....$$
    Solution
    Add $$15, 30, 45, 60, 75$$ to each number Next number is $$161 + 75 = 236$$
  • Question 10
    1 / -0
    The value of $$\displaystyle\frac{1}{1\cdot2\cdot3}+\displaystyle\frac{1}{2\cdot3\cdot4}+\displaystyle\frac{1}{3\cdot4\cdot5}+\displaystyle\frac{1}{4\cdot5\cdot6}$$ is equal to
    Solution

    Given  $$\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}$$


    $$\Rightarrow \dfrac{1}{1\times 2\times3 }+\dfrac{1}{2\times 3\times 4}+\dfrac{1}{3\times 4\times 5}+\dfrac{1}{4\times 5\times 6} $$


    $$\Rightarrow \dfrac{1}{6}+\dfrac{1}{24}+\dfrac{1}{60}+\dfrac{1}{120}$$


    $$= \dfrac{20+5+2+1}{120}$$


    $$= \dfrac{28}{120}$$


    $$= \dfrac{7}{30}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now