Self Studies

Sequences and Series Test - 23

Result Self Studies

Sequences and Series Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Value of 9+99+999+....9 + 99 + 999 + .... upto nn terms is
    Solution
    Given, 9+99+999+....9 + 99 + 999 + .... upto n n terms
    we can write this series in this form
       s=(101)+(1001)+(10001).......s=(10-1)+(100-1)+(1000-1)....... up to nn terms.
        =[(10+100+1000+......)+(111.......up to n terms)]= [(10+100+1000+......)+(-1-1-1-.......\text {up to n terms})]
        =[(10+102+103+.....up to n terms)n]= [(10+10^2+10^3+.....\text {up to n terms})-n]                ........(i)
    sum of n terms of GP. =a(rn1)r1=\dfrac {a(r^n-1)}{r-1}, where aa is first term and rr is the common ratio of the GP.
    We have the GP  10+102+103+....up to n terms\text {We have the GP }  10+10^2+10^3+.... \text {up to n terms} , here first term a=10a=10 and  common ratio r=10r=10
    So,
    10+102+103+......n terms=10(10n1)101=10n+110910+10^2+10^3+...... \text {n terms}= \dfrac {10(10^n-1)}{10-1} = \dfrac {10^{n+1}-10}{9}On Substitutings=10+102+103+......n terms= 10n+1109s=10+10^2+10^3+...... \text {n terms}=  \dfrac {10^{n+1}-10}{9} in equation (i). we get,
        =10n+1109n=10n+19n109 =\dfrac {10^{n+1}-10}{9}-n = \dfrac {10^{n+1}-9n-10}{9}
       9+99+999+.......up to n terms=10n+19n109\Rightarrow  9+99+999+.......\text {up to n terms} = \dfrac {10^{n+1}-9n-10}{9}
    Option D is correct.
  • Question 2
    1 / -0
    The sum of the series 4+ 8+16+32+.......4 + 8 + 16 + 32 + ........ till 1010 terms is
    Solution
    Let S10=4+ 8+16+32+........S_{10}=4 + 8 + 16 + 32 + ........ upto 1010 terms
                 =4(1+2+4+8+.........=4(1+2+4+8+..........upto 1010 terms
    Clearly, 1+2+22+23+...1+2+2^2+2^3+... is an GP with first term =1=1 and common ratio =2=2.
    S10=4[1(2101)21]=4(2101)\therefore S_{10}=4[\displaystyle \frac{1(2^{10}-1)}{2-1}]=4(2^{10}-1)
    Thus the sum of the given series is 4(2101)4(2^{10}-1)
  • Question 3
    1 / -0
     p=132(3p+2)[q=110(sin2qπ 11 icos2qπ 11  )  ] p=\displaystyle \sum _{ p=1 }^{ 32 }{ \left( 3p+2 \right) { \left[ \sum _{ q=1 }^{ 10 }{ \left( \sin { \frac { 2q\pi  }{ 11 }  } -i\cos { \frac { 2q\pi  }{ 11 }  }  \right)  }  \right]  }^{ p } } =
    Solution
    q=110(sin2qπ 11isin2qπ 11  ) \displaystyle\sum _{ q=1 }^{ 10 }{ \left( \sin { \frac { 2q\pi  }{ 11 } -i } \sin { \frac { 2q\pi  }{ 11 }  }  \right)  }
    ={sin2π 11 +sin4π 11 +...+10}i{cos2π 11 +cos4π 11 +...+10}\displaystyle=\left\{ \sin { \frac { 2\pi  }{ 11 }  } +\sin { \frac { 4\pi  }{ 11 }  } +...+10 \right\}- i\left\{ \cos { \frac { 2\pi  }{ 11 }  } +\cos { \frac { 4\pi  }{ 11 }  } +...+10 \right\}
    =sin(2π 11+9π 11 ) sin10π 11  sinπ 11  icos(2π 11+9π 11 )sin10π 11   sinπ 11  \displaystyle=\frac { \sin { \left( \frac { 2\pi  }{ 11 } +\frac { 9\pi  }{ 11 }  \right)  } \sin { \frac { 10\pi  }{ 11 }  }  }{ \sin { \frac { \pi  }{ 11 }  }  } -i\frac { \cos { \left( \frac { 2\pi  }{ 11 } +\frac { 9\pi  }{ 11 }  \right) \sin { \frac { 10\pi  }{ 11 }  }  }  }{ \sin { \frac { \pi  }{ 11 }  }  } =0i(1)=i=0-i\left( -1 \right) =i     ...(1)
    S=p=132(3q+2)[q=110(sin2qπ 11icos2qπ 11  )  ] p\displaystyle\therefore S=\sum _{ p=1 }^{ 32 }{ \left( 3q+2 \right) { \left[ \sum _{ q=1 }^{ 10 }{ \left( \sin { \frac { 2q\pi  }{ 11 } -i } \cos { \frac { 2q\pi  }{ 11 }  }  \right)  }  \right]  }^{ p } }
    =p=132(3p+2)ip=3p=132pip+2p=132ip=3A+2B\displaystyle=\sum _{ p=1 }^{ 32 }{ \left( 3p+2 \right) { i }^{ p } } =3\sum _{ p=1 }^{ 32 }{ p } { i }^{ p }+2\sum _{ p=1 }^{ 32 }{ { i }^{ p } } =3A+2B     ...(2)
    Now,  A=i+2i2+3i3+...+32i32\displaystyle A=i+2{ i }^{ 2 }+3{ i }^{ 3 }+...+32{ i }^{ 32 } Ai=i2+2i3+...+31i32+32i33\displaystyle \Rightarrow Ai={ i }^{ 2 }+2{ i }^{ 3 }+...+31{ i }^{ 32 }+32{ i }^{ 33 }
    A(1i)=i+i2+...+i3232i33\displaystyle\Rightarrow A\left( 1-i \right) =i+{ i }^{ 2 }+...+{ i }^{ 32 }-32{ i }^{ 33 } =i321i132i=32i[i32=1]\displaystyle =\frac { { i }^{ 32 }-1 }{ i-1 } -32i=-32i\quad \left[ \because { i }^{ 32 }=1 \right]
    A=32i1i=32(1+i) 2=16(1i)\displaystyle\therefore A=\frac { -32i }{ 1-i } =\frac { 32\left( 1+i \right)  }{ 2 } =16\left( 1-i \right)    ...(3)
    and,  B=i+i2+...+i32=0\displaystyle B=i+{ i }^{ 2 }+...+{ i }^{ 32 }=0   ...(4)
    Hence,  S=3×16(1i)=48(1i).\displaystyle S=3\times 16\left( 1-i \right) =48\left( 1-i \right) .
  • Question 4
    1 / -0
    Find the sum the infinite G.P.:
    1+13+19+127+.......1\, +\, \displaystyle {\frac{1}{3}\, +\, \frac{1}{9}\, +\, \frac{1}{27}\, +\, .......}
    Solution
    Formula used: Sum of infinite GP
    S=a+ar+ar2+ar3+...=a1rS_\infty=a+ar+ar^2+ar^3+...=\dfrac{a}{1-r}, where r<1|r|<1
    Given, 1+13+19+127+.......1\, +\, \displaystyle {\frac{1}{3}\, +\, \frac{1}{9}\, +\, \frac{1}{27}\, +\, .......}
    Clearly, it is a GP with first term a=1a=1 and common difference d=13d=\frac13
    1+13+19+127+.......=1113=32\therefore1\, +\, \displaystyle {\frac{1}{3}\, +\, \frac{1}{9}\, +\, \frac{1}{27}\, +\, .......}=\frac{1}{1-\frac13}=\frac32
    Hence, option B is correct.
  • Question 5
    1 / -0
    Evaluate 7+77+777+.............7 + 77 + 777 + ............. upto nn terms.
    Solution
    Let S=7+77+777+........+S=7+77+777+........+ up  to  nn  terms 
    79[9+99+999+.....]\Rightarrow \dfrac{7}{9}\left [ 9+99+999+..... \right ]

    79[(101 )+(1021 )+(103+1 )+........up to n terms ]\Rightarrow \dfrac{7}{9}\left [\left (10-1  \right )+\left (10^2-1  \right )+\left (10^3+1  \right )+........up\quad  to\quad  n\quad  terms  \right ]

    79[10+102+103+......+10nn ]\Rightarrow \dfrac{7}{9}\left [10+10^2+10^3+......+10^n-n  \right ]

    79[1010n19n]\Rightarrow \dfrac{7}{9}\left [ 10\frac{10^{n}-1}{9}-n \right ]

    781[10n+19n10]\Rightarrow \dfrac{7}{81}\left [ 10^{n+1}-9n-10 \right ]
  • Question 6
    1 / -0
    For 22+42+62+...+(2n)212+32+52+...+(2n1)2\frac {2^2+4^2+6^2+...+(2n)^2}{1^2+3^2+5^2+...+(2n-1)^2} to exceed 1.01, the maximum value of n is
    Solution
    22[12+22+...+n2][12+32+52+...+(2n1)2]\frac {2^2[1^2+2^2+...+n^2]}{[1^2+3^2+5^2+...+(2n-1)^2]}
    12+22+32+....+(2n)2=2n(2n+1)(4n+1)61^2+2^2+3^2+....+(2n)^2=\frac {2n(2n+1)(4n+1)}{6}
    [12+32....+(2n1)2+22[12+2n.....+n2][1^2+3^2....+(2n-1)^2+2^2[1^2+2^n.....+n^2]
    =2n(2n+1)(4n+1)6=\frac {2n(2n+1)(4n+1)}{6}
    S+4n(n+1)(2nn+1)6=2n(2n+1)(4n+1)6S+4\frac {n(n+1)(2nn+1)}{6}=\frac {2n(2n+1)(4n+1)}{6}
    S+2n(2n+1)(4n+1)64n(n+1)(2n+1)6S+\frac {2n(2n+1)(4n+1)}{6}-\frac {4n(n+1)(2n+1)}{6}
    =2n(2n+16)[4n+12n2]=2n\left (\frac {2n+1}{6}\right )[4n+1-2n-2]
    =2n(2n+1)(2n1)6=\frac {2n(2n+1)(2n-1)}{6}
    Ratio=4n(n+1)(2n+1)6×62n(2n+1)(2n1)=2n+22n1Ratio =\frac {4n(n+1)(2n+1)}{6}\times \frac {6}{2n(2n+1)(2n-1)}=\frac {2n+2}{2n-1}
    2n+22n1>101100\frac {2n+2}{2n-1} > \frac {101}{100}
    200n+200>202n101200n+200 > 202 n-101
    2n<3012n < 301
    n<3012n < \frac {301}{2}\Rightarrow maximum value =150=150
  • Question 7
    1 / -0
    In  the following question, the numbers/letters are arranged based on some pattern or principle.Choose the correct answer for the term marked by the symbol (?) 

    Solution

  • Question 8
    1 / -0
    The sum of 'n' terms of series 12+(12+22)+(12+22+32)+(12+22+32+42)+.......1^2+(1^2+2^2)+(1^2+ 2^2+ 3^2)+(1^2+2^2+ 3^2+4^2)+ ....... will be
    Solution
    The given series is 12+(12+22)+(12+22+32)+(12+22+32+42)+.....{ 1 }^{ 2 }+({ 1 }^{ 2 }+2^{ 2 })+({ 1 }^{ 2 }+2^{ 2 }+3^{ 2 })+({ 1 }^{ 2 }+2^{ 2 }+3^{ 2 }+4^{ 2 })+.....

    an=(12+22+32+.......+n2){ a }_{ n }=({ 1 }^{ 2 }+2^{ 2 }+3^{ 2 }+.......+n^{ 2 })

    =n(n+1)(2n+1)6=n(2n2+3n+1)6=2n3+3n2+n6=13n3+12n2+16n=\dfrac { n(n+1)(2n+1) }{ 6 } \\ =\dfrac { n(2n^{ 2 }+3n+1) }{ 6 } \\ =\dfrac { 2n^{ 3 }+3n^{ 2 }+n }{ 6 } \\ =\dfrac { 1 }{ 3 } n^{ 3 }+\dfrac { 1 }{ 2 } n^{ 2 }+\dfrac { 1 }{ 6 } n

    Therefore, we have:

    Sn=k=1nak=k=1n(13k3+12k2+16k) =13k=1nk3+12k=1nk2+16k=1nk=13×n2+(n+1)222+12×n(n+1)(2n+1)6+16×n(n+1)2{ S }_{ n }=\sum _{ k=1 }^{ n }{ { a }_{ k } } \\ =\sum _{ k=1 }^{ n }{ \left( \dfrac { 1 }{ 3 } k^{ 3 }+\dfrac { 1 }{ 2 } k^{ 2 }+\dfrac { 1 }{ 6 } k \right)  } \\ =\dfrac { 1 }{ 3 } \sum _{ k=1 }^{ n }{ k^{ 3 } } +\dfrac { 1 }{ 2 } \sum _{ k=1 }^{ n }{ k^{ 2 } } +\dfrac { 1 }{ 6 } \sum _{ k=1 }^{ n }{ k } \\ =\dfrac { 1 }{ 3 } \times \dfrac { n^{ 2 }+(n+1)^{ 2 } }{ 2^{ 2 } } +\dfrac { 1 }{ 2 } \times \dfrac { n(n+1)(2n+1) }{ 6 } +\dfrac { 1 }{ 6 } \times \dfrac { n(n+1) }{ 2 }
    =n(n+1)6[n(n+1)2+(2n+1)2+12 ]=n(n+1)6[n2+n+2n+1+12 ]=n(n+1)6[n(n+1)+2(n+1)2 ]=n(n+1)6[(n+1)(n+2)2 ]=n(n+1)2(n+2)12=\dfrac { n(n+1) }{ 6 } \left[ \dfrac { n(n+1) }{ 2 } +\dfrac { (2n+1) }{ 2 } +\dfrac { 1 }{ 2 }  \right] \\ =\dfrac { n(n+1) }{ 6 } \left[ \dfrac { n^{ 2 }+n+2n+1+1 }{ 2 }  \right] \\ =\dfrac { n(n+1) }{ 6 } \left[ \dfrac { n(n+1)+2(n+1) }{ 2 }  \right] \\ =\dfrac { n(n+1) }{ 6 } \left[ \dfrac { (n+1)(n+2) }{ 2 }  \right] \\ =\dfrac { n(n+1)^{ 2 }(n+2) }{ 12 }

    Hence, the sum is n(n+1)2(n+2)12\dfrac { n(n+1)^{ 2 }(n+2) }{ 12 }.
  • Question 9
    1 / -0
    11,26,56,101,161,.....11, 26, 56, 101, 161, .....
    Solution
    Add 15,30,45,60,7515, 30, 45, 60, 75 to each number Next number is 161+75=236161 + 75 = 236
  • Question 10
    1 / -0
    The value of 1123+1234+1345+1456\displaystyle\frac{1}{1\cdot2\cdot3}+\displaystyle\frac{1}{2\cdot3\cdot4}+\displaystyle\frac{1}{3\cdot4\cdot5}+\displaystyle\frac{1}{4\cdot5\cdot6} is equal to
    Solution

    Given  11.2.3+12.3.4+13.4.5+14.5.6\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}


    11×2×3+12×3×4+13×4×5+14×5×6\Rightarrow \dfrac{1}{1\times 2\times3 }+\dfrac{1}{2\times 3\times 4}+\dfrac{1}{3\times 4\times 5}+\dfrac{1}{4\times 5\times 6}


    16+124+160+1120\Rightarrow \dfrac{1}{6}+\dfrac{1}{24}+\dfrac{1}{60}+\dfrac{1}{120}


    =20+5+2+1120= \dfrac{20+5+2+1}{120}


    =28120= \dfrac{28}{120}


    =730= \dfrac{7}{30}

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now