Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    Value of $$9 + 99 + 999 + .... $$ upto $$n$$ terms is

  • Question 2
    1 / -0

    The sum of the series $$4 + 8 + 16 + 32 + .......$$. till $$10$$ terms is

  • Question 3
    1 / -0

    $$\displaystyle \sum _{ p=1 }^{ 32 }{ \left( 3p+2 \right) { \left[ \sum _{ q=1 }^{ 10 }{ \left( \sin { \frac { 2q\pi  }{ 11 }  } -i\cos { \frac { 2q\pi  }{ 11 }  }  \right)  }  \right]  }^{ p } } =$$

  • Question 4
    1 / -0

    Find the sum the infinite G.P.:
    $$1\, +\, \displaystyle {\frac{1}{3}\, +\, \frac{1}{9}\, +\, \frac{1}{27}\, +\, .......}$$

  • Question 5
    1 / -0

    Evaluate $$7 + 77 + 777 + .............$$ upto $$n$$ terms.

  • Question 6
    1 / -0

    For $$\frac {2^2+4^2+6^2+...+(2n)^2}{1^2+3^2+5^2+...+(2n-1)^2}$$ to exceed 1.01, the maximum value of n is

  • Question 7
    1 / -0

    In  the following question, the numbers/letters are arranged based on some pattern or principle.Choose the correct answer for the term marked by the symbol (?) 

  • Question 8
    1 / -0

    The sum of 'n' terms of series $$1^2+(1^2+2^2)+(1^2+ 2^2+ 3^2)+(1^2+2^2+ 3^2+4^2)+ .......$$ will be

  • Question 9
    1 / -0

    $$11, 26, 56, 101, 161, .....$$

  • Question 10
    1 / -0

    The value of $$\displaystyle\frac{1}{1\cdot2\cdot3}+\displaystyle\frac{1}{2\cdot3\cdot4}+\displaystyle\frac{1}{3\cdot4\cdot5}+\displaystyle\frac{1}{4\cdot5\cdot6}$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now