Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 37

Result Self Studies

Relations and Functions Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f:(-\infty ,\infty )\rightarrow (-\infty ,\infty )$$ is defined by $$f(x)=5x-6$$, then $$f^{-1}(x)=$$
    Solution
    $$f(x)=5x-6=y$$
    $$\Rightarrow 5x=y+6$$
    $$x=\dfrac{y+6}{5}$$
    $$\therefore f\left ( x \right )=y\Rightarrow x=f^{-1}\left ( y \right )$$
    $$\therefore f^{-1}\left ( y \right )=\dfrac{y+6}{5}$$

  • Question 2
    1 / -0
    If $$f:R\rightarrow R $$ is defined by $$\displaystyle f(x)={\dfrac{2x+1}{3}}$$  then $$f^{-1}(x)=$$
    Solution
    $$f\left ( x \right )=\dfrac{2x+1}{3}$$
    Let $$f\left ( x \right )=y=\dfrac{2x+1}{3}$$
    $$\Rightarrow 2x+1=3y$$
    $$2x=3y-1$$
    $$x=\dfrac{3y-1}{2}$$
    $$\therefore f\left ( x \right )=y\Rightarrow f^{-1}\left ( y \right )=x$$
    $$\Rightarrow f^{-1}\left ( y \right )=\dfrac{3y-1}{2}$$
    $$\Rightarrow f^{-1}\left ( x \right )=\dfrac{3x-1}{2}$$
  • Question 3
    1 / -0
    If $$f(x)=\dfrac{5x+6}{7x+9}$$ then $$f^{-1}(x)=$$
    Solution
    Let $$f\left ( x \right )=y=\dfrac{5x+6}{7x+9}$$
    $$7xy+9y=5x+6$$
    $$\Rightarrow x\left ( 7y-5 \right )=6-9y$$
    $$x=\dfrac{9y-6}{-7y+5}$$
    $$x=f^{-1}\left ( y \right )=\dfrac{9y-6}{-7y+5}$$
  • Question 4
    1 / -0
    If $$f$$ from $$R$$ into $$R$$ is defined by $$f(x)=x^{3}-1$$, then $$f^{-1}\left \{ -2,0,7 \right \}=$$
    Solution
    $$f$$ is invertible throughout $$R$$

    $$\therefore f\left ( x \right )=x^{3}-1=y$$

    $$\Rightarrow x=\sqrt[3]{y+1}=f^{-1}\left ( y \right )$$

    $$\therefore f^{-1}\left ( -2 \right )=-1$$

    $$f^{-1}\left ( 0 \right )=1$$

    $$f^{-1}\left ( 7 \right )=2$$

    $$\therefore f^{-1}\left \{ -2,0,7 \right \}=\left \{ -1,1,2 \right \}$$
  • Question 5
    1 / -0
    If $$f(x)=e^{5x+13}$$  then $$f^{-1}(x)=$$
    Solution
    Let $$f\left ( x \right )=e^{5x+13}=y$$
    $$f\left ( x \right )=y\Rightarrow x=f^{-1}\left ( y \right )$$
    $$5x+13=\ln y$$
    $$5 x=-13+\log y$$
    $$ x=\dfrac{-13+\log  y}{5}$$
    $$\therefore f^{-1}\left ( y \right )=\dfrac{-13+\log  y}{5}$$
  • Question 6
    1 / -0
    If $$f(x)=3x-1$$ and $$g(x)=5x+6$$ then $$(g^{-1}of^{-1})(2)=$$
    Solution
    $$f\left ( x \right )=3x-1=y$$
    $$\Rightarrow x=\displaystyle\frac{y+1}{3}$$
    $$\therefore \displaystyle f^{-1}\left ( y \right )=\frac{y+1}{3}$$
    $$\Rightarrow \displaystyle f^{-1}\left ( x \right )=\frac{x+1}{3}$$

    $$g\left ( x \right )=5x+6=z$$
    $$\Rightarrow x=\displaystyle \frac{z-6}{5}$$
    $$g^{-1}\left ( z \right )=\displaystyle \frac{z-6}{5}$$
    $$\Rightarrow g^{-1}\left ( x \right )=\displaystyle \frac{x-6}{5}$$

    $$\displaystyle g^{-1}\left ( f^{-1} \left ( x \right )\right )=g^{-1}\left ( \frac{x+1}{3} \right )$$

    $$=\displaystyle \frac{\dfrac{x+1}{3}-6}{5}$$

    $$\displaystyle =\frac{x-17}{15}$$

    $$\displaystyle \therefore g^{-1}\left ( f^{-1}\left ( 2 \right ) \right )=\frac{2-17}{15}=-1$$
  • Question 7
    1 / -0
    If $$f:[1,\infty )\rightarrow [2,\infty) $$ is given by $$f(x)=x+\dfrac{1}{x}$$, then $$f^{-1}(x)=$$
    Solution
    Let $$f\left ( x \right )=x+\dfrac{1}{x}=y$$   
    $$\Rightarrow x=f^{-1}\left ( y \right )$$ & $$x^{2}-yx+1=0$$
    Solving   $$x^{2}-yx+1$$, we get
    $$x^{2}-yx+1=0$$
    $$x=\dfrac{y\pm \sqrt{y^{2}-4}}{2}$$
    $$\therefore f^{-1}=\dfrac{x+\sqrt{x^{2}-4}}{2}$$
    $$\because$$  $$f$$ is defined from  $$\left ( 1,\infty  \right )\rightarrow \left ( 2,\infty  \right )$$ negative part is discarded.
  • Question 8
    1 / -0
    The function $$f:(0,\infty )\rightarrow (-\infty ,\infty )$$ is defined by $$ f(x)=\log_{3} x $$ then $$ f^{-1}(x)=$$
    Solution
    $$f\left ( x \right )=\log _{3}x$$
    $$f^{-1}:\left ( -\infty ,\infty  \right )\rightarrow \left ( 0, \infty \right )$$
    Let $$\log _{3}x=y=f\left ( x \right )$$
    $$\Rightarrow x=3^{y}$$
    $$f\left ( x \right )=y\Rightarrow f^{-1}\left ( y \right )=x=3^{y}$$
    $$\therefore f^{-1}\left ( x \right )=3^{x}$$
  • Question 9
    1 / -0
    If $$f:\left \{ 1,2,3,..... \right \}\rightarrow \left \{ 0,\pm 1,\pm 2,..... \right \}$$ is defined by  $$f(n)=\begin{cases} \dfrac{n}{2} & \text{ if } n  \space is \space even \\-\left (\dfrac{n-1}{2} \right ) & \text{ if } n \space is \space  odd \end{cases}$$ then  $$f^{-1}(-100)$$ is
    Solution

    $$f(n)$$ is positive if $$n$$ is even & negative if $$n$$ is odd.
    $$\therefore f^{-1}\left ( -100 \right )=-2x+1$$
    $$=-2\left ( -100 \right )+1$$
    $$=200+1$$
    $$=201$$
  • Question 10
    1 / -0
    $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}+4$$ then $$f^{-1}(13)=$$
    Solution
    $$f\left ( x \right )=x^{2}+4=y$$
    $$\Rightarrow x^{2}=y-4$$
    $$x=\pm \sqrt{y-4}$$
    $$\therefore f^{-1}\left ( 13 \right )=\pm \sqrt{13-4}=\pm  3 $$
    $$f(3)=13\,\&\,f(-3)=13$$
    Thus image $$13$$  has two pre-images i.e, $$3$$ and $$-3$$
    $$\therefore$$ $$f$$ is not invertible

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now