Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 40

Result Self Studies

Relations and Functions Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Assertion(A):  If $$X=\left \{ x:-1\leq x\leq 1 \right \}$$  and  $$f:X\rightarrow X$$ defined by $$f(x)=\sin \pi x; \forall x\in A$$ is not invertible function

    Reason (R): For a function $$f$$ to have inverse, it should be a bijection
    Solution
    $$f(-\pi )=f(0)=f(\pi )=0$$
    $$\therefore f$$ is not a bijection
    $$\therefore \sin\pi x$$ is not invertible.
  • Question 2
    1 / -0
    Let $$S$$ be set of all rational numbers. The functions $$f:R\rightarrow R,\ g:R\rightarrow R$$ are defined as 
    $$f(x)=\begin{cases}
    0, & x \in S \\ 
    1, & x \notin S
    \end{cases}$$
    $$g(x)=\begin{cases}
    -1 & x\in S \\ 
     0 & x\notin S
    \end{cases}$$
    then, $$(fog) (\pi)+(gof)(e)=$$
    Solution
    $$f(x)=\begin{cases}
    0, & x \text{ is rational} \\
    1, & x \text{ is irrational}
    \end{cases}$$
    $$g(x)=\begin{cases}
    -1 & x\text { is rational} \\
     0& x\text { is irrational }
    \end{cases}$$
    $$fog(\pi )=f(g(\pi ))=f(0)=0$$
    so $$gof(e)=g(f(e))=g(1)=-1$$
    $$\therefore fog(\pi )+gof(e)=-1$$
  • Question 3
    1 / -0
    If $$n\geq 1$$ is any integer, $$\mathrm{d}(n)$$ denotes the number of positive factors of $$n$$, then for any prime number $$\mathrm{p},\ \mathrm{d}(\mathrm{d}(\mathrm{d}(\mathrm{p}^{7})))=$$
    Solution
    For a number being $$p^{n}$$ the total number of positive factors excluding $$1$$ and the number itself will be $$n-1$$.
    Therefore total number of positive factors will be $$n-1+2$$
    $$=n+1$$
    Hence for $$p^{7}$$ we will have $$8$$ factors.
    Now for $$8=2^{3}$$.
    Hence $$8$$ will have $$4$$ factors.
    Now $$4=2^{2}$$, hence the number of factors will be $$3$$.
  • Question 4
    1 / -0
    Let $$\displaystyle f\left( x \right)={ x }^{ 2 }-x+1,x\ge \left( \frac { 1 }{ 2 }  \right) $$ then the solution of the equation $$f(x)=f^{-1}(x)$$ is
    Solution
    $$\displaystyle y={ x }^{ 2 }-x+1\Rightarrow { x }^{ 2 }-x+\left( 1-y \right)       =0$$
    Here, $$a=1,b=-1$$ and $$c=1-y$$

    $$\displaystyle x=\frac { 1\pm \sqrt { 1-4\left( 1-y \right)  }  }{ 2 } \quad \quad \left[ \because x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac }  }{ 2a }  \right] $$

    $$\displaystyle \because x>\frac { 1 }{ 2 } ,\quad \therefore x=\frac { 1 }{ 2 } +\sqrt { y-\frac { 3 }{ 4 }  } $$

    $$\displaystyle \Rightarrow f^{ -1 }\left( x \right) =\frac { 1 }{ 2 } +\sqrt { x-\frac { 3 }{ 4 }  } $$

    Now, $$\displaystyle { x }^{ 2 }-x+1=\frac { 1 }{ 2 } +\sqrt { x-\frac { 3 }{ 4 }  } $$
    Since the graphs of the original and inverse functions can intersect only on the straight line $$y=x,$$ therefore 
    $$x=f\left( x \right) \quad \quad \Rightarrow x={ x }^{ 2 }-x+1$$

    $$\Rightarrow { x }^{ 2 }-2x+1=0$$

    $$\Rightarrow { \left( x-1 \right)  }^{ 2 }=0$$
    $$\Rightarrow x=1$$
  • Question 5
    1 / -0
    lf $$f:[-6,6]\rightarrow \mathbb{R}$$ is defined by $$f(x)=x^{2}-3$$ for $$x\in \mathbb{R}$$ then
    $$(fofof)(-1)+(fofof)(0)+(fofof)(1)=$$
    Solution
    $$fofof(-1)=fof(-2)=f(1)=-2$$
    $$fofof(1)=fof(-2)=f(1)=-2$$
    $$fofof(0)=fof(-3)=f(0)=33$$
    $$\therefore fofof(-1)+fofof(1)+fofof(0)=29$$
    $$=32-3$$
    $$=(4\sqrt{2})^{2}-3$$
    $$\Rightarrow f(4\sqrt{2})=(4\sqrt{2})^{2}-3$$

  • Question 6
    1 / -0
    lf $$f$$ : $$R\rightarrow R$$ is defined by
    $$f(x)=\left\{\begin{array}{l}x+4 & x<-4\\3x+2 & -4\leq x<4\\x-4 & x\geq 4\end{array}\right.$$
    then the correct matching of list I to List II is. 
    List - IList - II
    $$\mathrm{A}) f(-5)+f(-4)=$$$$\mathrm{i}) 14$$
    $$\mathrm{B}) f(|f(-8)|)=$$ii $$) 4$$
    $$\mathrm{C}) f(f(-7)+f(3))=$$$$\mathrm{i}\mathrm{i}\mathrm{i})-11$$
    $$\mathrm{D}) f(f(f(f(0)))+1=$$$$\mathrm{i}\mathrm{v})-1$$
    v) $$1$$
    vi) $$0$$
    Solution
    $$f(-5)=-5+4=-1  ;  f(-4)=3(-4)+2=-10$$
    $$\therefore f(-5)+f(4)=-11$$
    $$f(|f(-8)|)=f((-8+4))=f(4)=4-4=0$$
    $$f(f(-7)) tf(3) = f(-7+4)+3(3)+2$$
    $$=3(-3)+2+3(3)+2$$
    $$=4$$
    $$f(f(f(f(0))))+1=f(f(f(2)))+1=f(f(8))+1$$
    $$=f(4)+1=0+1=1$$

  • Question 7
    1 / -0
    If $$f:R\rightarrow R$$ is defined by $$f(x)=x^{2}-10x+21 $$ then $$ f^{-1}(-3)$$ is
    Solution
    Let $$f^{-1}(-3)=t$$
    $$\Rightarrow f(t)=-3$$
    $$t^{2}-10t+21=-3$$
    $$t^{2}-10t+24=0$$
    $$t^{2}-6t-4t+24=0$$
    $$t(t-6)-4(t-6)=0$$
    $$\Rightarrow t=6,4 = f^{-1}(-3)$$
  • Question 8
    1 / -0

    lf $$g(f(x)) =|\sin \mathrm{x}|,f(g(x)) =(\sin\sqrt{\mathrm{x}})^{2}$$, then
    Solution
    $$g(f(x))=|\sin x|=\sqrt{\sin^{2}x}$$        .......(i)
    $$f(g(x))=\sin^{2}\sqrt{x}$$           .......(ii)

    Comparing $$i$$ and $$ii$$

    $$\Rightarrow$$$$g(f(x))=|\sin x|=\sqrt{\sin^{2}x}$$

    $$\Rightarrow$$$$g(\sin^{2}x)=\sqrt{\sin^{2}x}=g(f(x))$$

    And
    $$\Rightarrow$$$$f(g(x))=\sin^{2}\sqrt{x}$$

    $$\Rightarrow$$$$f(\sqrt{x})=\sin^{2}\sqrt{x}=f(g(x))$$

    Therefore
    $$\Rightarrow$$$$g(x)=\sqrt{x}$$

    $$\Rightarrow$$$$f(x)=\sin^{2}x$$
  • Question 9
    1 / -0

    lf $$ f(x)=x-x^{2}+x^{3}-x^{4}+\ldots..\infty$$ when $$|x|<1$$, then the ascending order of the following is
    a) $$f(1/2)$$
    b) $$f^{-1}(1/2)$$
    c) $$ f(-1/2)$$
    d) $$f^{-1}(-1/2)$$
    Solution
    $$f(x)=x-x^2+x^3-x^4$$
    $$f(x)=\dfrac{x}{1+x}(x)< 1$$
    $$f\left ( \dfrac{1}{2} \right )=\dfrac{1}{3}$$
    $$f\left ( \dfrac{-1}{2} \right )=-1$$
    $$f(x)=\dfrac{x}{1+x}$$
    $$y=\dfrac{x}{1+x}$$
    $$y+xy=x$$
    $$\dfrac{y}{(u-1)}=x$$
    $$f^{-1}x=\dfrac{-x}{x-1}$$
    $$f^{-1}\left ( \dfrac{1}{2} \right )=1$$
    $$f^{-1}\left ( \dfrac{-1}{2} \right )=\dfrac{-1}{3}$$
  • Question 10
    1 / -0
    Let $$f$$ be an injective function with domain $$\{x, y, z\}$$and range $$\{1,2,3\}$$ such that exactly one of the follwowing statements is correct and the remaining are false :
    $${f}({x})=1,{f}({y})\neq 1$$,
    $${f}({z})\neq 2$$, 
    then the value of $${f}^{-1}(1)$$ is
    Solution
    It gives three cases
    Case (1) When $$f(x)=1$$ is true. 
    In this case remaining two are false
    $$f(y)=1$$ and $$f(z)=2$$
    This means $$x$$ and $$y$$ have the same image, so $$f(x)$$ is not an injective, which is a contradiction.

    Case (2) when $$f\left( y \right)\neq 1$$ is true 
    If $$f\left( y \right)\neq 1$$is true then the remaining statements are false.
    $$\therefore f\left( x\right)\neq 1$$ and $$f(z)=2$$
    i.e., both $$x$$ and $$y$$ are not mapped to $$1.$$ 
    So, either both associate to $$2$$ or $$3,$$
    Thus, it is not injective.

    Case (3) When $$f(z) \neq 2$$ is true 
    If $$f(z) \neq2$$ is true then remaining statements are fales 
    $$\therefore$$ If $$f(x) \neq1$$ and $$f(y)=1$$
    But $$f$$ is injective
    Thus, we have $$f(x)=2, f(y)=1$$ and $$f(z)=3$$
    Hence, $$\displaystyle f^{ -1 }\left( 1 \right)=y$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now