Self Studies

Relations and Functions Test - 46

Result Self Studies

Relations and Functions Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle f:R \rightarrow R $$ be defined as $$\displaystyle f(x)= x^{2}+5x+9$$ then $$\displaystyle f^{-1}(8) $$ equals to 
    Solution
    Let $$\displaystyle f^{-1}(8)= x, $$ then $$\displaystyle f(x)= 8$$

    $$\implies x^{2}+5x+9= 8 $$

    $$\implies x^{2}+5x+1= 0 $$

    $$\displaystyle

    \Rightarrow  x= \frac{-5\pm \sqrt{25-4}}{2} $$ 

    $$\displaystyle x=

    \frac{-5+\sqrt{21}}{2},\frac{-5-\sqrt{21}}{2}\in R $$ 

    Hence

    $$\displaystyle  f^{-1}(8)= \left \{ \frac{-5+\sqrt{21}}{2}

    ,\frac{-5-\sqrt{21}}{2}\right \}$$

  • Question 2
    1 / -0
    If $$\displaystyle f(x)= (x-1)+(x+1)$$ and
    $$\displaystyle g(x)= f\left \{ f(x) \right \}$$ then $$\displaystyle {g}'(3)$$
    Solution
    Simplifying,$$f(x)$$ we get 

    $$f(x)=2x$$

    Hence

    $$f(f(x))=2(f(x))$$

    $$=2(2x)$$

    $$=4x$$

    Hence

    $$g(x)=f(f(x))$$

    $$=4x$$

    Thus 

    $$g'(x)=4$$

    Hence $$g'(3)=4$$ .

  • Question 3
    1 / -0
    If $$\displaystyle f\left ( x \right )=x+\tan x$$ and $$\displaystyle g^{-1}=f$$ then $$\displaystyle g{}'\left ( x \right )$$ equals
    Solution
    $$f\left( x \right) =x+\tan { x } \dashrightarrow \left( i \right) \\ { g }^{ -1 }(x)=f(x)\dashrightarrow \left( ii \right) \\ f\left( g(x) \right) =g(x)+\tan { g(x) } \quad \left( from\quad equation\quad \left( i \right) \quad  \right) \\ { g }^{ -1 }\left( g(x) \right) =g(x)+\tan { g(x) } \left( from\quad equation\quad \left( ii \right) \quad  \right) \\ x=g(x)+\tan { g(x) } \quad \dashrightarrow \left( iii \right) \quad \left( { \because \quad g }^{ -1 }\left( g(x) \right) =x \right) \\ $$
    Differentiating the above equation w.r.t x,
    $$\\ 1=g^{ ' }\left( x \right) +(\sec ^{ 2 }{ g(x) } )g^{ ' }\left( x \right) \\ g^{ ' }\left( x \right) =\dfrac { 1 }{ 1+\sec ^{ 2 }{ g(x) }  } =\dfrac { 1 }{ 2+\tan ^{ 2 }{ g\left( x \right)  }  } \quad \left( \because \sec ^{ 2 }{ g(x) } =1+\tan ^{ 2 }{ g\left( x \right)  } \quad  \right) \\ from\quad eqn\quad \left( iii \right) ,\quad \tan { g(x) } =x-g\left( x \right) \\ \therefore g^{ ' }\left( x \right) =\dfrac { 1 }{ 2+{ (x-g\left( x \right) ) }^{ 2 } } $$
  • Question 4
    1 / -0
    Let $$\displaystyle f:N\rightarrow Y$$  be a function defined as $$f(x)=4x+3$$ where $$\displaystyle Y=\left \{ y \in N:y=4x+3 \right \}$$ for some $$\displaystyle x\in N$$ such that $$f$$ is invertible then its inverse is
    Solution
    Let $$\displaystyle y=f(x)\Rightarrow x= f^{-1}(y)$$  ........(A) 
    $$\displaystyle \therefore y=4x+3$$
    $$\displaystyle \Rightarrow 4x=y-3 \Rightarrow x=\frac{y-3}{4}$$
    $$\displaystyle \Rightarrow f^{-1}(y)=\frac{y-3}{4}$$  .......(using A)
    $$\displaystyle \Rightarrow g(y)=\frac{y-3}{4}$$ 
  • Question 5
    1 / -0
    Let f(x)=tan x, x$$\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$$ and $$\displaystyle g\left (x  \right )=\sqrt{1-x^{2}}$$ Determine $$g o f(1)$$.
    Solution

  • Question 6
    1 / -0
    If $$\displaystyle f\left ( x \right )=\frac{ax+b}{cx+d}$$ and $$\displaystyle \left ( fof \right )x=x,$$ then d=?
    Solution
    $$\displaystyle \left ( fof \right )x=x\Rightarrow f\left [ f\left ( x \right ) \right ]=x$$ or $$\displaystyle  f\left [ \frac{ax+b}{cx+d} \right ]=x$$ or $$\displaystyle\frac{a\left [ \frac{ax+b}{cx+d}\right ]+b}{c\left [\frac{ax+b}{cx+d} \right ]+d}=x$$ $$\displaystyle  \therefore \frac{x\left ( a^{2}+bc \right )+b\left ( a+d \right )}{cx\left ( a+d \right )+\left ( bc+d^{2} \right )}=x$$ Clearly if $$\displaystyle  a+d=0$$ or $$\displaystyle  d=-a$$ then in that case $$\displaystyle  L.H.S.=\frac{x\left ( a^{2}+bc \right )+0}{0+\left ( bc+a^{2} \right )}=x$$ $$\displaystyle \because d=-a$$
  • Question 7
    1 / -0
    The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements,$$\displaystyle m\leq n,$$ is
    Solution
    Let $$A=\{a_1,a_2, a_3.....a_m\}$$
    and $$B=\{b_1,b_2, b_3.....b_n\}$$ where $$m \le n$$
    Given $$f:A\rightarrow B$$ be an injective mapping.
    So, for $$a_1 \in A$$, there are $$n$$ possible choices for $$f(a_1)\in B$$.
    For $$a_2 \in A$$, there are $$(n-1)$$ possible choices for $$f(a_2)\in B$$. 
    Similarly for $$a_m \in A$$, there are $$(n-m-1)$$ choices for $$f(a_m)\in B$$
    So, there are $$n(n-1)(n-2).....(n-m-1)=\dfrac{n!}{(n-m)!}$$ injective mapping from $$A$$ to $$B.$$

  • Question 8
    1 / -0
    Given $$\displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right )$$ and $$\displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x)$$ equals
    Solution
    Given $$f(x)\, =\, \log\, \left( \displaystyle \dfrac{1\, +\, x}{1\, -\,

    x} \right)$$ and $$g(x)\, =\, \displaystyle \dfrac{3x\, +\, x^{3}}{1\,

    +\, 3x^{2}}$$

    $$\therefore fog (x)\, =\, \log \left( \displaystyle \dfrac{1\, +\, \dfrac{3x\, +\,

    x^{3}}{1\, +\, 3x^{2}}}{1\, -\,\displaystyle \dfrac{3x\, +\, x^{3}}{1\,

    +\, 3x^{2}}} \right)$$

    $$=\, \log\, \left(\displaystyle \dfrac{(1\, +\,

    x)^{3}}{(1\, -\, x)^{3}} \right)\, =\, 3\, \log\, \left(\displaystyle

    \dfrac{1\, +\, x}{1\, -\, x} \right)\, =\, 3\, f(x)$$
  • Question 9
    1 / -0
    The inverse of the function$$\displaystyle f(x)=(1-(x-5)^{3})^{1/5} $$is 
    Solution
    Let $$y=(1-(x-5)^{3})^{\frac{1}{5}}$$

    $$y^{5}=1-(x-5)^{3}$$

    $$(x-5)^{3}=1-y^{5}$$

    $$x-5=(1-y^{5})^{\frac{1}{3}}$$

    $$x=5+(1-y^{5})^{\frac{1}{3}}$$

    Replacing $$x$$ with $$y$$ gives us 

    $$f^{-1}(x)=5+(1-x^{5})^{\frac{1}{3}}$$
  • Question 10
    1 / -0
    Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
    {(x, y): x is a person, y is the mother of x}
    Solution
    We have {(x, y) : x is a person, y is the mother of x}. Clearly each person 'x' has only one biological mother. So above set of ordered pair is a function. Now more than one person may have same mother. So function is many-one and surjective. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now