Self Studies

Relations and Functions Test - 46

Result Self Studies

Relations and Functions Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let f:RR\displaystyle f:R \rightarrow R be defined as f(x)=x2+5x+9\displaystyle f(x)= x^{2}+5x+9 then f1(8)\displaystyle f^{-1}(8) equals to 
    Solution
    Let f1(8)=x,\displaystyle f^{-1}(8)= x, then f(x)=8\displaystyle f(x)= 8

        x2+5x+9=8\implies x^{2}+5x+9= 8

        x2+5x+1=0\implies x^{2}+5x+1= 0

    $$\displaystyle

    \Rightarrow  x= \frac{-5\pm \sqrt{25-4}}{2} $$ 

    $$\displaystyle x=

    \frac{-5+\sqrt{21}}{2},\frac{-5-\sqrt{21}}{2}\in R $$ 

    Hence

    $$\displaystyle  f^{-1}(8)= \left \{ \frac{-5+\sqrt{21}}{2}

    ,\frac{-5-\sqrt{21}}{2}\right \}$$

  • Question 2
    1 / -0
    If f(x)=(x1)+(x+1)\displaystyle f(x)= (x-1)+(x+1) and
    g(x)=f{f(x)}\displaystyle g(x)= f\left \{ f(x) \right \} then g(3)\displaystyle {g}'(3)
    Solution
    Simplifying,f(x)f(x) we get 

    f(x)=2xf(x)=2x

    Hence

    f(f(x))=2(f(x))f(f(x))=2(f(x))

    =2(2x)=2(2x)

    =4x=4x

    Hence

    g(x)=f(f(x))g(x)=f(f(x))

    =4x=4x

    Thus 

    g(x)=4g'(x)=4

    Hence g(3)=4g'(3)=4 .

  • Question 3
    1 / -0
    If f(x)=x+tanx\displaystyle f\left ( x \right )=x+\tan x and g1=f\displaystyle g^{-1}=f then g(x)\displaystyle g{}'\left ( x \right ) equals
    Solution
    f(x)=x+tanx(i)g1(x)=f(x)(ii)f(g(x))=g(x)+tang(x)(fromequation(i) )g1(g(x))=g(x)+tang(x)(fromequation(ii) )x=g(x)+tang(x)(iii)(g1(g(x))=x)f\left( x \right) =x+\tan { x } \dashrightarrow \left( i \right) \\ { g }^{ -1 }(x)=f(x)\dashrightarrow \left( ii \right) \\ f\left( g(x) \right) =g(x)+\tan { g(x) } \quad \left( from\quad equation\quad \left( i \right) \quad  \right) \\ { g }^{ -1 }\left( g(x) \right) =g(x)+\tan { g(x) } \left( from\quad equation\quad \left( ii \right) \quad  \right) \\ x=g(x)+\tan { g(x) } \quad \dashrightarrow \left( iii \right) \quad \left( { \because \quad g }^{ -1 }\left( g(x) \right) =x \right) \\
    Differentiating the above equation w.r.t x,
    1=g(x)+(sec2g(x))g(x)g(x)=11+sec2g(x) =12+tan2g(x)  (sec2g(x)=1+tan2g(x)  )fromeqn(iii),tang(x)=xg(x)g(x)=12+(xg(x))2\\ 1=g^{ ' }\left( x \right) +(\sec ^{ 2 }{ g(x) } )g^{ ' }\left( x \right) \\ g^{ ' }\left( x \right) =\dfrac { 1 }{ 1+\sec ^{ 2 }{ g(x) }  } =\dfrac { 1 }{ 2+\tan ^{ 2 }{ g\left( x \right)  }  } \quad \left( \because \sec ^{ 2 }{ g(x) } =1+\tan ^{ 2 }{ g\left( x \right)  } \quad  \right) \\ from\quad eqn\quad \left( iii \right) ,\quad \tan { g(x) } =x-g\left( x \right) \\ \therefore g^{ ' }\left( x \right) =\dfrac { 1 }{ 2+{ (x-g\left( x \right) ) }^{ 2 } }
  • Question 4
    1 / -0
    Let f:NY\displaystyle f:N\rightarrow Y  be a function defined as f(x)=4x+3f(x)=4x+3 where Y={yN:y=4x+3}\displaystyle Y=\left \{ y \in N:y=4x+3 \right \} for some xN\displaystyle x\in N such that ff is invertible then its inverse is
    Solution
    Let y=f(x)x=f1(y)\displaystyle y=f(x)\Rightarrow x= f^{-1}(y)  ........(A) 
    y=4x+3\displaystyle \therefore y=4x+3
    4x=y3x=y34\displaystyle \Rightarrow 4x=y-3 \Rightarrow x=\frac{y-3}{4}
    f1(y)=y34\displaystyle \Rightarrow f^{-1}(y)=\frac{y-3}{4}  .......(using A)
    g(y)=y34\displaystyle \Rightarrow g(y)=\frac{y-3}{4} 
  • Question 5
    1 / -0
    Let f(x)=tan x, xϵ[π2,π2]\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ] and g(x )=1x2\displaystyle g\left (x  \right )=\sqrt{1-x^{2}} Determine gof(1)g o f(1).
    Solution

  • Question 6
    1 / -0
    If f(x)=ax+bcx+d\displaystyle f\left ( x \right )=\frac{ax+b}{cx+d} and (fof)x=x,\displaystyle \left ( fof \right )x=x, then d=?
    Solution
    (fof)x=xf[f(x)]=x\displaystyle \left ( fof \right )x=x\Rightarrow f\left [ f\left ( x \right ) \right ]=x or  f[ax+bcx+d]=x\displaystyle  f\left [ \frac{ax+b}{cx+d} \right ]=x or a[ax+bcx+d]+bc[ax+bcx+d]+d=x\displaystyle\frac{a\left [ \frac{ax+b}{cx+d}\right ]+b}{c\left [\frac{ax+b}{cx+d} \right ]+d}=x  x( a2+bc )+b(a+d)cx(a+d)+(bc+d2)=x\displaystyle  \therefore \frac{x\left ( a^{2}+bc \right )+b\left ( a+d \right )}{cx\left ( a+d \right )+\left ( bc+d^{2} \right )}=x Clearly if  a+d=0\displaystyle  a+d=0 or  d=a\displaystyle  d=-a then in that case  L.H.S.=x(a2+bc )+00+(bc+a2)=x\displaystyle  L.H.S.=\frac{x\left ( a^{2}+bc \right )+0}{0+\left ( bc+a^{2} \right )}=x d=a\displaystyle \because d=-a
  • Question 7
    1 / -0
    The total number of injective mappings from a set with mm elements to a set with nn elements,mn,\displaystyle m\leq n, is
    Solution
    Let A={a1,a2,a3.....am}A=\{a_1,a_2, a_3.....a_m\}
    and B={b1,b2,b3.....bn}B=\{b_1,b_2, b_3.....b_n\} where mnm \le n
    Given f:ABf:A\rightarrow B be an injective mapping.
    So, for a1Aa_1 \in A, there are nn possible choices for f(a1)Bf(a_1)\in B.
    For a2Aa_2 \in A, there are (n1)(n-1) possible choices for f(a2)Bf(a_2)\in B
    Similarly for amAa_m \in A, there are (nm1)(n-m-1) choices for f(am)Bf(a_m)\in B
    So, there are n(n1)(n2).....(nm1)=n!(nm)!n(n-1)(n-2).....(n-m-1)=\dfrac{n!}{(n-m)!} injective mapping from AA to B.B.

  • Question 8
    1 / -0
    Given f(x)=log(1+x1x)\displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right ) and g(x)=3x+x31+3x2,fog(x)\displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x) equals
    Solution
    Given $$f(x)\, =\, \log\, \left( \displaystyle \dfrac{1\, +\, x}{1\, -\,

    x} \right)and and g(x)\, =\, \displaystyle \dfrac{3x\, +\, x^{3}}{1\,

    +\, 3x^{2}}$$

    $$\therefore fog (x)\, =\, \log \left( \displaystyle \dfrac{1\, +\, \dfrac{3x\, +\,

    x^{3}}{1\, +\, 3x^{2}}}{1\, -\,\displaystyle \dfrac{3x\, +\, x^{3}}{1\,

    +\, 3x^{2}}} \right)$$

    $$=\, \log\, \left(\displaystyle \dfrac{(1\, +\,

    x)^{3}}{(1\, -\, x)^{3}} \right)\, =\, 3\, \log\, \left(\displaystyle

    \dfrac{1\, +\, x}{1\, -\, x} \right)\, =\, 3\, f(x)$$
  • Question 9
    1 / -0
    The inverse of the functionf(x)=(1(x5)3)1/5\displaystyle f(x)=(1-(x-5)^{3})^{1/5} is 
    Solution
    Let y=(1(x5)3)15y=(1-(x-5)^{3})^{\frac{1}{5}}

    y5=1(x5)3y^{5}=1-(x-5)^{3}

    (x5)3=1y5(x-5)^{3}=1-y^{5}

    x5=(1y5)13x-5=(1-y^{5})^{\frac{1}{3}}

    x=5+(1y5)13x=5+(1-y^{5})^{\frac{1}{3}}

    Replacing xx with yy gives us 

    f1(x)=5+(1x5)13f^{-1}(x)=5+(1-x^{5})^{\frac{1}{3}}
  • Question 10
    1 / -0
    Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
    {(x, y): x is a person, y is the mother of x}
    Solution
    We have {(x, y) : x is a person, y is the mother of x}. Clearly each person 'x' has only one biological mother. So above set of ordered pair is a function. Now more than one person may have same mother. So function is many-one and surjective. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now