Self Studies
Selfstudy
Selfstudy

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$\displaystyle f:R \rightarrow R $$ be defined as $$\displaystyle f(x)= x^{2}+5x+9$$ then $$\displaystyle f^{-1}(8) $$ equals to 

  • Question 2
    1 / -0

    If $$\displaystyle f(x)= (x-1)+(x+1)$$ and
    $$\displaystyle g(x)= f\left \{ f(x) \right \}$$ then $$\displaystyle {g}'(3)$$

  • Question 3
    1 / -0

    If $$\displaystyle f\left ( x \right )=x+\tan x$$ and $$\displaystyle g^{-1}=f$$ then $$\displaystyle g{}'\left ( x \right )$$ equals

  • Question 4
    1 / -0

    Let $$\displaystyle f:N\rightarrow Y$$  be a function defined as $$f(x)=4x+3$$ where $$\displaystyle Y=\left \{ y \in N:y=4x+3 \right \}$$ for some $$\displaystyle x\in N$$ such that $$f$$ is invertible then its inverse is

  • Question 5
    1 / -0

    Let f(x)=tan x, x$$\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$$ and $$\displaystyle g\left (x  \right )=\sqrt{1-x^{2}}$$ Determine $$g o f(1)$$.

  • Question 6
    1 / -0

    If $$\displaystyle f\left ( x \right )=\frac{ax+b}{cx+d}$$ and $$\displaystyle \left ( fof \right )x=x,$$ then d=?

  • Question 7
    1 / -0

    The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements,$$\displaystyle m\leq n,$$ is

  • Question 8
    1 / -0

    Given $$\displaystyle f\left ( x \right )=\log \left ( \frac{1+x}{1-x} \right )$$ and $$\displaystyle g\left ( x \right )=\frac{3x+x^{3}}{1+3x^{2}}, fog (x)$$ equals

  • Question 9
    1 / -0

    The inverse of the function$$\displaystyle f(x)=(1-(x-5)^{3})^{1/5} $$is 

  • Question 10
    1 / -0

    Are the following sets of ordered pairs functions? If so, examine whether the mapping is surjective or injective :
    {(x, y): x is a person, y is the mother of x}

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now