Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 49

Result Self Studies

Relations and Functions Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x) = 3x - 5$$, then $$f^{-1}\, (x) $$
    Solution
    Let  $$y = f(x) = 3x - 5$$

    Clearly $$f(x)$$ is one-one onto function so it is invertible.

    $$\Rightarrow  y = 3x - 5\Rightarrow x = \cfrac{y+5}{3}$$

    $$\therefore  \displaystyle f^{-1}(x)= \frac{y+5}{3}$$
  • Question 2
    1 / -0
    If $$f(x)=\sqrt [ n ]{ a-{ x }^{ n } } ,x>0,n\geq 2,n\in N$$, then find the inverse of $$f(x)$$.
    Solution
    First method:
    $$f(x) = (a - x^{n})^{1/n}$$

    $$(fof)(x)=f[f(x)] $$

               $$=f[(a - x^{n})^{1/n}]$$

               $$ =(a - (f(x))^{n})^{1/n} $$

               $$= (a - a + x^{n})^{1/n} = x$$

    $$\Rightarrow (fof)(x) = x$$

    $$\Rightarrow f^{-1}(x)=f(x)=\sqrt [ n ]{ a-{ x }^{ n } }$$

    Alternative Method :
    $$f(x)=\sqrt [ n ]{ a-{ x }^{ n } }$$

    Put $$f(x)=y$$

    $$y={ (a-{ x }^{ n }) }^{ 1/n }$$

    Taking nth power ,
    $${ y }^{ n }={ a-{ x }^{ n } }$$

    $${ x }^{ n }={ a-{ y }^{ n } }$$

    $$\Rightarrow x={ { (a-{ y }^{ n }) } }^{ 1/n }$$

    $$\Rightarrow f^{-1}(y)={ { (a-{ y }^{ n }) } }^{ 1/n }$$

    $$\Rightarrow f^{-1}(x)={ { (a-{ x }^{ n }) } }^{ 1/n }$$
  • Question 3
    1 / -0
    If $$g(x) = 2x + 1$$ and $$h(x) = 4x^{2} + 4x + 7$$, find a function $$f$$ such that $$f o g = h$$
    Solution
    $$f(g(x)) = h = 4x^2+4x+7=(2x+1)^2+6=(g(x))^2+6$$

    $$\Rightarrow f(x) =x^2+6$$
  • Question 4
    1 / -0
    Which of the following are two distinct linear functions which map the interval $$[-1, 1]$$ onto $$[0, 2]$$
    Solution
    Out of two linear functions one will be increasing and other will be decreasing.

    Let $$f(x) = ax+b$$

    For increasing: $$f(-1)=0=> b-a=0\Rightarrow b=a$$ and $$f(1) = 2\Rightarrow a+b=2\Rightarrow a=b=1\therefore f(x) = 1+x$$

    For decreasing: $$f(-1)=2=> b-a=2$$ and $$f(1) = 0\Rightarrow a+b=2\Rightarrow b=1, a=-1\therefore f(x) = 1-x$$
  • Question 5
    1 / -0
    A function $$f : \left[ \displaystyle \frac{1}{2}, \infty \right) \rightarrow \left[ \displaystyle \frac{3}{4}, \infty \right)$$ defined as, $$f(x) = x^{2} - x + 1$$. 

    Then for what value of $$x$$ does equation $$f(x) = f^{-1} (x)$$ hold right.
    Solution
    $$f(x) = x^{2} - x + 1$$

    Substitute $$f(x)=y$$

    $$y= x^{2} - x + 1$$

    $$\Rightarrow x^2-x+1-y=0$$

    $$\Rightarrow x=\dfrac{1\pm\sqrt{4y-3}}{2}$$

    $$\Rightarrow f^{-1}(y)=\dfrac{1\pm\sqrt{4y-3}}{2}$$

    $$\Rightarrow f^{-1}(x)=\dfrac{1\pm\sqrt{4x-3}}{2}$$

    Now, we will check which value of $$x$$ from the options gives $$f(x)=f^{-1}(x)$$

    Here, $$f(3)=7$$ 

    $$f^{ -1 }(3)=\dfrac { 1\pm 3 }{ 2 } =2,-1$$

    $$f(x)\neq f^{-1}(x)$$ for $$x=3$$

    Similarly for $$x=2$$, $$f(x)\ne f^{-1}(x)$$

    Now, for $$x=1$$

    $$f(1)=1$$

    $$f^{-1}=\dfrac{1\pm{1}}{2}=1,0$$

    Hence, for $$x=1$$ , $$f(x)= f^{-1}(x)$$
  • Question 6
    1 / -0
    $$f(x)\, >\, x;\, \forall\, x\, \epsilon\, R.$$ The equation $$f (f(x)) -x = 0$$ has
    Solution
    Given $$f(x) > x $$ $$\forall x \epsilon R$$
    Hence, $$ f(x)-x$$ has no real roots, because $$f(x)-x >0$$
    Since, $$x \epsilon R \implies f(x) \epsilon R$$
    $$f(f(x))>x$$
    $$\implies f(f(x))-x>0$$
    Hence it will have no real root.
  • Question 7
    1 / -0
    If $$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow  R, g(x) = x^2 + 1 $$ then $$(fog)(3)$$ is equal to
    Solution
    Given,
     $$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow  R,g(x) = x^2 + 1 $$

    $$g(3)=3^2+1=10$$

    $$f(10)=(10+1)^2=121$$

    $$\therefore fog(3)=f\left(g(3)\right)=f(10)=121$$

    Hence, option A.
  • Question 8
    1 / -0
    If $$f(x) = \sqrt{| x-1|}$$ and $$g(x) = \sin x$$, then $$(fog) (x)$$ equals
    Solution
    $$\displaystyle fog\left( x \right) =f\left( g\left( x \right)  \right) =\sqrt { \left| \sin { x } -1 \right|  } $$

    $$=\sqrt { \left| 1-\cos { \left( \dfrac { \pi  }{ 2 } -x \right)  }  \right|  } =\sqrt { 2 } \left| \sin { \left( \dfrac { \pi  }{ 4 } -\dfrac { x }{ 2 }  \right)  }  \right| =\left| \sin { \dfrac { x }{ 2 }  } -\cos { \dfrac { x }{ 2 }  }  \right| $$
  • Question 9
    1 / -0
    If $$f(x) = \log x$$, $$g(x) = x^3$$, then $$f[g(a)] + f[g(b)]$$ equals
    Solution
    We have $$f(x) = \log x$$ 

    $$g(x) = x^3$$

    $$g(a) = a^3 $$

    $$f(g(a)) = \log (a^3) $$

    $$f(g(a)) =3 \log a $$

    Similarly, 

    $$f(g(b)) = 3 \log b $$

    $$\Rightarrow f(g(a)) + f(g(b)) = 3 \log a + 3 \log b $$

    $$\Rightarrow f(g(a)) + f(g(b)) = 3 \log ab $$

    $$\Rightarrow f(g(a)) + f(g(b)) = 3 f(ab)$$
  • Question 10
    1 / -0
     from the given statement $$N$$ denotes the natural number and $$W$$ denotes the whole number, so which statement in the following is correct
    Solution
    Natural numbers are naturally occurring counts of an object $$1, 2, 3, 4,… $$forming an infinite list in which the first number is $$1$$ and every next number is equal to the preceding number $$+1.$$
    Whole number include the set of all Natural numbers and also $$0.$$ 
    Let $$N$$ and $$W$$ elements of natural and whole numbers.
    $$N=\{1,2,3,4,....\infty\}$$
    $$W=\{0,1,2,3,4,...\infty\}$$
    So, here we can say $$N$$ is subset of $$W.$$
    $$\therefore$$  $$N\subset W$$ is correct statement.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now