Self Studies
Selfstudy
Selfstudy

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f(x) = 3x - 5$$, then $$f^{-1}\, (x) $$

  • Question 2
    1 / -0

    If $$f(x)=\sqrt [ n ]{ a-{ x }^{ n } } ,x>0,n\geq 2,n\in N$$, then find the inverse of $$f(x)$$.

  • Question 3
    1 / -0

    If $$g(x) = 2x + 1$$ and $$h(x) = 4x^{2} + 4x + 7$$, find a function $$f$$ such that $$f o g = h$$

  • Question 4
    1 / -0

    Which of the following are two distinct linear functions which map the interval $$[-1, 1]$$ onto $$[0, 2]$$

  • Question 5
    1 / -0

    A function $$f : \left[ \displaystyle \frac{1}{2}, \infty \right) \rightarrow \left[ \displaystyle \frac{3}{4}, \infty \right)$$ defined as, $$f(x) = x^{2} - x + 1$$. 


    Then for what value of $$x$$ does equation $$f(x) = f^{-1} (x)$$ hold right.

  • Question 6
    1 / -0

    $$f(x)\, >\, x;\, \forall\, x\, \epsilon\, R.$$ The equation $$f (f(x)) -x = 0$$ has

  • Question 7
    1 / -0

    If $$ f : R \rightarrow R, f(x) = (x + 1)^2$$ and $$g : R \rightarrow  R, g(x) = x^2 + 1 $$ then $$(fog)(3)$$ is equal to

  • Question 8
    1 / -0

    If $$f(x) = \sqrt{| x-1|}$$ and $$g(x) = \sin x$$, then $$(fog) (x)$$ equals

  • Question 9
    1 / -0

    If $$f(x) = \log x$$, $$g(x) = x^3$$, then $$f[g(a)] + f[g(b)]$$ equals

  • Question 10
    1 / -0

     from the given statement $$N$$ denotes the natural number and $$W$$ denotes the whole number, so which statement in the following is correct

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now