Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 50

Result Self Studies

Relations and Functions Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x) = x^3 $$ and $$g(x) = sin2x$$, then
    Solution
    Given,
    $$ f(x)=x^3  $$ and  $$g(x)=\sin 2x$$

    Clearly,

    $$ f(1)=1 \Rightarrow g[f(1)]=\sin 2 $$

    $$ g(\cfrac{\pi}{12}) =\dfrac{1} {2} \Rightarrow f[g(\dfrac{\pi}{12})]=\dfrac{1}{8}$$

    and,$$ f(2)=8 \Rightarrow  g[f(2)]= \sin 16 $$

    So, the correct option is (B).
  • Question 2
    1 / -0
    If $$f(x) = (a x^n)^{1/n},$$ where $$\ n \in N$$, then $$f\{f(x)\}$$ equals
    Solution
    We have, $$f(x) = (a x^n)^{1/n}=a^{1/n}x=kx$$ where $$k = a^{1/n}$$

    $$\therefore f\{f(x)\} = kf(x) = k^2x =a^{2/n} x$$
  • Question 3
    1 / -0
    Let $$X = \left\{1,2,3,4\right\}$$ and $$Y = \left\{1,3,5,7,9\right\}$$. Which of the following is relations from $$X$$ to $$Y$$
    Solution
    We have 
    $$X = \left\{1,2,3,4\right\}$$ and $$Y = \left\{1,3,5,7,9\right\}$$.
    $$X \times Y=\{(1,1),(1,3),(1,5),(1,7),(1,9), (2,1),(2,3),(2,5),$$
    $$(2,7),(2,9), (3,1),(3,3),(3,5),(3,7),(3,9),(4,1),(4,3),(4,5),(4,7),(4,9)\}$$

    Let's take option A,
    $$R_1 = \left\{(x,y) | y = 2x+1, x \in X, y \in Y\right\}$$
    $$R_{1}= \{(1,3),(2,5),(3,7), (4,9)\}$$
    Since, $$R_1 \subseteq X\times Y$$
    So, $$R_1$$ is a relation from $$X$$ to $$Y$$ 

    Clearly, $$R_2$$ is not a relation from $$X$$ to $$Y$$ as $$(5,5) \notin X\times Y$$
    Similarly, $$R_3$$ is not a relation from $$X$$ to $$Y$$ as $$(5,7) \notin X\times Y$$
    In the same manner, $$R_4$$ is also not a relation from $$X$$ to $$Y$$ as $$(7,9) \notin X\times Y$$
  • Question 4
    1 / -0
    If $$f(x) =\dfrac {x+2}{x-1}=y$$, then.
    Solution
    Given, $$ f(x) = \dfrac {x+2}{x-1}=y $$

                $$  =>x+2 = y (x-1) $$

                $$ => y +2 = x y - x $$

                $$ => x (y-1) = (y +2) $$

                $$ => x = \dfrac {y+2}{y-1} $$

                $$ => x = f (y)  $$ 
  • Question 5
    1 / -0
    If $$f(x) =\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$, then $$f[g(x)]$$ equals.

    Solution
    Given $$f(x)=\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$

    then $$f[g(x)]=\ln {\displaystyle \frac { 1+\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } }  }{ 1-\displaystyle\frac { 3x+x^{ 3 } }{ 1+3x^{ 2 } }  }  } $$

    $$=\ln {\displaystyle \frac { 1+3x^{ 2 }+3x+x^{ 3 } }{ 1+3x^{ 2 }-3x-x^{ 3 } }  } $$

    $$=\ln\left[ {\displaystyle \frac { 1+x }{ 1-x }  }\right]^3 $$

    $$=3\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$

    $$\Rightarrow f[g(x)]=3f(x)$$

    Hence, option C.
  • Question 6
    1 / -0
    Let $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$, then $$fog (x)$$ is
    Solution
    Given $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$

    $$fog(x)=f(\log_ex)=e^{3\log_ex}=x^3$$

    Hence, option B.
  • Question 7
    1 / -0
    If $$f(x) = x^3-  1 $$ and domain of $$f = \{0, 1, 2, 3\}$$, then domain of $$f^{-1}(x)$$ is
    Solution
    We know domain of $$f^{-1}(x)$$ will be the range of $$f(x)$$
    which are $$ = \{0^3-1, 1^3-1, 2^3-1, 3^3-1\} = \{-1,0,7,26\}$$
  • Question 8
    1 / -0
    Let $$f : R \rightarrow  R, g : R \rightarrow R$$ be two function such that
    $$f(x) = 2x-  3, g(x) = x^3 + 5$$
    The function $$(fog)^{1}(x)$$ is equal to.
    Solution
    Given $$f(x) = 2x-3$$ and $$g(x) = x^3+ 5$$
    $$(fog)(x) = fg(x) = f(x^3+5) = 2(x^3+5) -3 = 2x^3 +7$$
    Let $$(fog)(x) = y = 2x^3+7$$  
    $$y-7 = 2x^3$$
    $$x = (\dfrac{y-7}{2})^{\dfrac{1}{3}}$$
    $$\therefore (fog)^{-1}(x) = (\dfrac{x-7}{2})^{\dfrac{1}{3}}$$
  • Question 9
    1 / -0
    If $$f(x) = 3x -  5, \,\,then\,\, f^{-1}(x)$$.
    Solution
    Given, $$f(x)= 3x-5$$

    Let $$y=f^{ -1 }\left( x \right) $$

    $$ \Rightarrow x=f\left( y \right) =3y-5$$

    $$ \Rightarrow y=\dfrac { x+5 }{ 3 } $$
  • Question 10
    1 / -0
    The inverse of the function $$f(x)= [-1+  (x -3)^5]^{\tfrac 17}$$ is
    Solution
    $$f\left( x \right) =[-1+(x-3)^{ 5 }]^{\frac17}$$

    Let,

    $$ y=f^{ -1 }\left( x \right) $$

    $$ \Rightarrow x=f\left( y \right) =[-1+(y-3)^{ 5 }]^{\frac17}$$

    $$\Rightarrow y=3+(1+x^{ 7 })^{\frac15}$$

    Hence, option A.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now