Self Studies
Selfstudy
Selfstudy

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f(x) = x^3 $$ and $$g(x) = sin2x$$, then

  • Question 2
    1 / -0

    If $$f(x) = (a x^n)^{1/n},$$ where $$\ n \in N$$, then $$f\{f(x)\}$$ equals

  • Question 3
    1 / -0

    Let $$X = \left\{1,2,3,4\right\}$$ and $$Y = \left\{1,3,5,7,9\right\}$$. Which of the following is relations from $$X$$ to $$Y$$

  • Question 4
    1 / -0

    If $$f(x) =\dfrac {x+2}{x-1}=y$$, then.

  • Question 5
    1 / -0

    If $$f(x) =\ln {\displaystyle \frac { 1+x }{ 1-x }  } $$ and $$g(x)=\displaystyle \frac {3x+x^3}{1+3x^2}$$, then $$f[g(x)]$$ equals.

  • Question 6
    1 / -0

    Let $$f(x) = e^{3x}, g(x) = \log_ex, x > 0$$, then $$fog (x)$$ is

  • Question 7
    1 / -0

    If $$f(x) = x^3-  1 $$ and domain of $$f = \{0, 1, 2, 3\}$$, then domain of $$f^{-1}(x)$$ is

  • Question 8
    1 / -0

    Let $$f : R \rightarrow  R, g : R \rightarrow R$$ be two function such that
    $$f(x) = 2x-  3, g(x) = x^3 + 5$$
    The function $$(fog)^{1}(x)$$ is equal to.

  • Question 9
    1 / -0

    If $$f(x) = 3x -  5, \,\,then\,\, f^{-1}(x)$$.

  • Question 10
    1 / -0

    The inverse of the function $$f(x)= [-1+  (x -3)^5]^{\tfrac 17}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now