Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 73

Result Self Studies

Relations and Functions Test - 73
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$K(x)$$ is a function such that $$K(f(x))=a+b+c+d$$,
    Where,
    $$a=\begin{cases}
    0 & \text{ if f(x) is even}  \\ 
    -1 & \text{ if f(x) is odd} \\ 
    2 & \text{ if f(x) is neither even nor odd} 
    \end{cases}$$
    $$b=\begin{cases}
    3 & \text{ if  f(x) is periodic} \\ 
    4 & \text{  if  f(x) is  aperiodic}
    \end{cases}$$
    $$c=\begin{cases}
    5 & \text{ if  f(x) is  one one} \\ 
    6 & \text{  if  f(x) is many one}
    \end{cases}$$
    $$d=\begin{cases}
    7 & \text{ if  f(x) is onto} \\ 
    8 & \text{  if  f(x) is into}
    \end{cases}$$ 
    $$h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right )$$ 

    On the basis of above information, answer the following questions.$$K(\phi(x)) $$
    Solution
    $$\phi(x)\rightarrow \left(\dfrac{-\pi}{2},\dfrac{\pi}{2}\right)$$
    Now we know that for the given domain, $$\tan(x)$$ is one-one, periodic, odd and an into function.
    Hence $$f(\phi(x))$$
    $$=-1+3+5+8$$
    $$=16-1$$
    $$=15$$
  • Question 2
    1 / -0
    Let $$f:{x, y, z}\rightarrow (a, b, c)$$ be a one-one function. It is known that only one of the following statements is true:
    (i) $$f(x)\neq b$$
    (ii)$$f(y)=b$$
    (iii)$$f(z)\neq  a$$
    Solution
    When (i) is true, then $$f(x) \neq b, f(y) \neq b , f(z) = a $$

    $$\Rightarrow$$ Two ordered pair function is possible $$ f(x) = a, f(y) = c, f(z) = a$$ or $$f(x) = c, f(y) = a, f(z) = a$$

    But given $$f$$ is one-one and only one such function is possible. Hence (i) can't be true.

    When (ii) is true, then $$f(y) = b, f(z) =a , f(x) = b$$. This is also not possible.

    Clearly if (iii) is true then it is satisfying every condition.
    Hence ordered pair of $$f$$ is $$\{(x,a), (y,b), (z,c)\}$$
  • Question 3
    1 / -0
    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are given by $$f(x)=|x|$$ and $$g(x)=[x]$$ for each $$x\in R,$$ then $$\left\{ x\in R:g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right)  \right\} =$$
    Solution
    $$g\left( f\left( x \right)  \right) \le f\left( g\left( x \right)  \right) \Rightarrow g\left( \left| x \right|  \right) \le f\left( \left[ x \right]  \right) \Rightarrow \left[ \left| x \right|  \right] \le \left[ \left| x \right|  \right] $$
    This is true for each $$x\in R$$
  • Question 4
    1 / -0
    Let $$\displaystyle f:\left[-\frac{\pi}{3},\frac{2\pi}{3}\right]\rightarrow [0,4]$$ be a function defined by $$\displaystyle f(x)=\sqrt 3 \sin x-\cos x+2$$ then $$\displaystyle f^{-1}(x)$$ equals
    Solution
    $$y=2\left(\dfrac{\sqrt{3}}{2}\sin\left(x\right)-\dfrac{1}{2}\cos\left(x\right)\right)+2$$

    $$\Rightarrow \dfrac{y}{2}-1=\dfrac{\sqrt{3}}{2}\sin\left(x\right)-\dfrac{1}{2}\cos\left(x\right)$$

    $$\Rightarrow \dfrac{y-2}{2}=-\cos\left(\dfrac{\pi}{3}+x\right)$$

    $$\Rightarrow \dfrac{y-2}{2}=\cos\left(\pi-\left(\dfrac{\pi}{3}+x\right)\right)$$

    $$\Rightarrow \dfrac{y-2}{2}=\cos\left(\dfrac{2\pi}{3}-x\right)$$

    $$\Rightarrow \cos^{-1}\left(\dfrac{y-2}{2}\right)=\dfrac{2\pi}{3}-x$$

    $$x=\dfrac{2\pi}{3}-\cos^{-1}\left(\dfrac{y-2}{2}\right)$$
    Therefore,
    $$f^{-1}\left(x\right)=\dfrac{2\pi}{3}-\cos^{-1}\left(\dfrac{x-2}{2}\right)$$
  • Question 5
    1 / -0
    Suppose $$\displaystyle  f\left ( x \right )=\left ( x+1 \right )^{2}$$ for $$\displaystyle x\geq -1$$. If $$\displaystyle g(x)$$ is the function whose graph is the reflection of the graph of $$\displaystyle f(x)$$ with respect to the line $$y=x $$, then $$\displaystyle g(x)$$ is equal to
    Solution
    $$g(x)=f^{-1}(x)$$
    $$y=(x+1)^{2}$$
    $$\sqrt{y}=x+1$$
    $$\sqrt{y}-1=x$$
    $$g(x)=f^{-1}(x)=\sqrt{x}-1$$ for $$x\geq 0$$
  • Question 6
    1 / -0
    If $$\displaystyle f\left ( x \right )= \frac{3x+2}{5x-3}$$ , then
    Solution
    $$\displaystyle y=\frac{3x+2}{5x-3}$$

    $$\displaystyle 5xy-3y=3x+2$$

    $$\displaystyle x(5y-3)=3y+2$$

    $$\displaystyle x=\frac{3y+2}{5y-3}$$

    Hence $$f(x)$$ is its own inverse.

    $$\displaystyle f^{-1}(x)=\frac{3x+2}{5x-3}=f(x)$$
  • Question 7
    1 / -0
    If $$\displaystyle f\left ( x \right )+f\left ( \dfrac1x \right )=0,\; f(e)=1; g\left ( x \right )=f^{-1}\left ( x \right )$$ then $$\displaystyle g{}'\left ( x \right )$$ equals
    Solution

    $$f(x)+f\left(\dfrac{1}{x}\right)=0$$ is satisfied by $$f(x)=k \ln x$$, where $$k$$ is a constant.

    Given that $$f(e)=1 \Rightarrow k=1$$

    $$f(x)= \ln x$$

    $$ \Rightarrow f^{-1}x=e^x$$

    $$ \Rightarrow g(x)=e^x$$

    $$ \Rightarrow g'(x)=e^x$$

  • Question 8
    1 / -0
    If $$f:[1,\infty )\rightarrow [2,\infty )$$ is given by $$\displaystyle f\left( x \right)=x+\frac { 1 }{ x } ,$$ then $$f^{-1}(x)$$ equals
    Solution
    Let $$\displaystyle y=x+\frac { 1 }{ x } $$

    $$\displaystyle \Rightarrow { x }^{ 2 }-xy+1=0\quad \Rightarrow x=\frac { y\pm \sqrt { { y }^{ 2 }-4 }  }{ 2 } $$

    $$\because \quad x\in \left( 2,\infty  \right) $$

    $$\displaystyle \therefore x=\frac { y+\sqrt { { y }^{ 2 }-4 }  }{ 2 } $$

    Hence, $$\displaystyle f^{ -1 }\left( x \right) =\frac { x+\sqrt { { x }^{ 2 }-4 }  }{ 2 } $$
  • Question 9
    1 / -0
    Let $$\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}$$, the value of $$a$$ for which $$\displaystyle f:R\rightarrow \left [ -1,2 \right ]$$ is onto , is
    Solution
    Given $$\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}$$

    Since, $$\displaystyle f:R\rightarrow \left [ -1,2 \right ]$$ is onto

    $$R(f)=Co-domain [-1,2]$$

    $$-1 \le \dfrac{ax^{2}+2x+1}{2x^{2}-2x+1}\le 2$$

    $$\Rightarrow -(2x^{ 2 }-2x+1)\le ax^{ 2 }+2x+1\le 2(2x^{ 2 }-2x+1)$$

    $$\Rightarrow -2x^{ 2 }+2x-1\le ax^{ 2 }+2x+1\le 4x^{ 2 }-4x+2$$   ....(1)

    $$\Rightarrow -2x^{ 2 }+2x-1\le ax^{ 2 }+2x+1$$

    $$\Rightarrow (a+2)x^2+2\ge 0$$

    So for all $$x\in R$$ , $$a+2\ge 0$$

    $$\Rightarrow a\ge -2$$        .....(2)

    From the inequality (1), it follows that 

    $$ax^{ 2 }+2x+1\le 4x^{ 2 }-4x+2$$

    $$\Rightarrow (a-4)x^2+6x-1 \le 0$$

    $$\Rightarrow a-4 < 0$$ and $$D\le 0$$

    $$\Rightarrow a<4 $$ and $$36+4a-16 \le 0$$

    $$\Rightarrow a<4 $$ and $$a\le -5$$     ....(3)

    From (2) and (3), we get 

    $$a\in (-\infty,-5]\cup [-2,4)$$
  • Question 10
    1 / -0
    The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements, $$m \leq n $$ is 
    Solution
    $$a_{1} \in $$A can have $$n$$ images in $$B$$, but the element $$a_{2}$$  will have only $$(n-1)$$ images as the mappings are to be one-one (injective). 

    Similarly the elements $$a_{3}$$ will have $$(n-2)$$ images.

    Hence the total number of mappings will be, 

    $$n(n-1)(n-2)...(n-\overline{m-1})=n(n-1)(n-2)...(n-m+1)$$

    Multiply above and below by $$(n-m)(n-m-1)...3.2.1$$ 

    $$\therefore$$ Required numbers is $$\displaystyle \frac{n!}{(n-m)!} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now