Self Studies

Matrices Test - 28

Result Self Studies

Matrices Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\begin{bmatrix} x & -3 \\ -9 & y \end{bmatrix}\begin{bmatrix} 4 & -3 \\ 9 & 7 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$ then $$x=$$ .......... $$, y $$ $$=$$ ........
    Solution
    $$\begin{bmatrix} x & -3 \\ -9 & y \end{bmatrix}\begin{bmatrix} 4 & -3 \\ 9 & 7 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\\ \Rightarrow \begin{bmatrix} 4x-27 & -3x+(-21) \\ -36+9y & +27+7y \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
    Using conditions for equality of matrices we can write
    $$4x-27=1\\ \Rightarrow x=7\quad \quad -(i)\\ -(3x+21)=0\\ \Rightarrow x=-7\quad \quad -(ii)\\ -36+9y=0\\ \Rightarrow y=4\quad \quad -(iii)\\ 27+7y=1\\ \Rightarrow y=-4\quad \quad -(iv)$$
    Possible answer is $$x=7$$ & $$y=4$$
  • Question 2
    1 / -0
    If $$A= \begin{bmatrix}
    2 &  3   \\
    3  & 2      
    \end{bmatrix},$$ $$B= \begin{bmatrix}
    2  & 1   \\
    3  & 5      
    \end{bmatrix}$$ and $$C= \begin{bmatrix}
    0  & 1   \\
    1  & 2      
    \end{bmatrix},$$ then $$\left ( AB \right )\times C=$$
    Solution

  • Question 3
    1 / -0
    If  $$A=\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$ , $$B=\begin{bmatrix} 3 & 2 & 0 \\ 1 & 0  & 4  \end{bmatrix}$$, then $$AB=$$ is
    Solution
    Given $$A= \begin{bmatrix} 2 &1 \\1 & 3 \end{bmatrix}$$ and $$B=\begin{bmatrix} 3&2&0\\1&0&4 \end{bmatrix}$$
    $$AB=\begin{bmatrix} 2\times 3 +1\times1 & 2\times 2+1\times0 & 2\times0+1\times4  \\ 1\times3+3\times1 & 1\times2+3\times0 & 1\times0+3\times4 \end{bmatrix}$$
            $$ =\begin{bmatrix} 6+1 & 4+0 & 0+4 \\ 3+3 & 2+0 & 0+12 \end{bmatrix}$$
            $$=\begin{bmatrix} 7 & 4 & 4 \\ 6 & 2 & 12 \end{bmatrix}$$

    Therefore the correct option is $$(D)$$
  • Question 4
    1 / -0
    Let  $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\   and\  B=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix},  a,b\in N.$$ Then:
    Solution
    Given
    $$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}B=\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
    Finding AB
    $$AB=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}=\begin{bmatrix} a+2\times 0 & 1\times 0+2\times b \\ 3\times a+4\times 0 & 3\times 0+4\times b \end{bmatrix}$$
    $$AB=\begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}$$
    Finding BA
    $$BA=\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}=\begin{bmatrix} a+0\times 3 & 2a+0\times 4 \\ 0\times 1+3b & 0\times 2+4b \end{bmatrix}$$
    $$BA=\begin{bmatrix} a & 2a \\ 3b & 4b \end{bmatrix}$$
    If $$AB=BA$$
    $$\begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}=\begin{bmatrix} a & 2a \\ 3b & 4b \end{bmatrix}$$
    Comparing each element we get
    $$a=a,2b=2a$$
    $$\Rightarrow a=b$$
    $$\therefore $$There are infinitely many b's
    for which $$AB=BA$$
    Answer=B
  • Question 5
    1 / -0
    If A = $$\begin{bmatrix}
     2\ \ \ 4 \\
     3\ \ 5
    \end{bmatrix},$$ $$B= \begin{bmatrix}
     x\ \ \ y \\
     6\ \ \ 5
    \end{bmatrix}$$ and  $$AB= \begin{bmatrix}8\ \ \ 2 \\
     6\ \ \ -2 
    \end{bmatrix}$$
    then $$x= $$ ______, and $$y = $$ _____.
    Solution
    $$ A = \begin{bmatrix} 3 & 4 \\ 3 & 5 \end{bmatrix} $$;
    $$ B = \begin{bmatrix} x & y \\ 6 & 5 \end{bmatrix} $$
    and $$ AB = \begin{bmatrix} 8 & 2 \\ 6 & -2 \end{bmatrix} $$
    Now, 
    $$ AB = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x & y \\ 6 & 5 \end{bmatrix} \\ = \begin{bmatrix} 2x+24 & 2y + 20 \\ 3x + 30 & 3y + 25 \end{bmatrix} \, \, \textrm{ [By the property of multiplication of matrix] }$$

    Now, comparing the given value we get,

    $$ \begin{bmatrix} 8 & 2 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 2x+24 & 2y + 20 \\ 3x+30 & 3y + 25 \end{bmatrix} $$

    Equating each element we get,

    $$ 2x + 24 = 8 \Rightarrow x = -8 \\ 2y + 20 = 2 \\ \Rightarrow y = -9 $$
    $$ \therefore $$ option C is correct.
  • Question 6
    1 / -0
    If $$A=\begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix},  B=\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\  -1 & 1 & 2 \end{bmatrix}$$  then  $$AB=$$
    Solution
    Given,
    $$A=\begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$ and $$B=\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{bmatrix}$$

    Then, $$AB=\begin{bmatrix} 1 & 3 & 0 \\-1 & 2 & 1\\0&0&2 \end{bmatrix} \begin{bmatrix} 2&3&4 \\1& 2&3 \\-1&1&2 \end{bmatrix}$$

                      $$= \begin{bmatrix} 1\times2+3\times1+0\times(-1) & 1\times3+3\times2+0\times1& 1\times4+3\times3+0\times2 \\ (-1)\times2+2\times1+1\times(-1) & (-1)\times3+2\times2+1\times1 & (-1)\times4+2\times3+1\times2 \\ 0\times2+0\times1+2\times(-1) & 0\times3+0\times2+2\times1 & 0\times4+0\times3+2\times2 \end{bmatrix}$$

                       $$= \begin{bmatrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{bmatrix}$$

    Hence, the correct option is $$(B)$$
  • Question 7
    1 / -0
    $$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1  \end{bmatrix}, \text{then} \,A^{3}-4A^{2}-6A=$$
    Solution
    $$A^{2}=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2  \\ 2 & 2 & 1  \end{bmatrix}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2  \\ 2 & 2 & 1  \end{bmatrix}=\begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8  \\ 8 & 8 & 9  \end{bmatrix}$$

    $$A^{3}=A^{2}\times A=\begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8  \\ 8 & 8 & 9  \end{bmatrix}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2  \\ 2 & 2 & 1  \end{bmatrix}=\begin{bmatrix} 41 & 42 & 42 \\ 42 & 41 & 42  \\ 42 & 42 & 41  \end{bmatrix}$$

    $$A^{3}-4A^{2}-6A=\begin{bmatrix} 41 & 42 & 42 \\ 42 & 41 & 42  \\ 42 & 42 & 41  \end{bmatrix}-\begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32  \\ 32 & 32 & 36  \end{bmatrix}\begin{bmatrix} 6 & 12 & 12 \\ 12 & 6 & 12  \\ 12 & 12 & 6  \end{bmatrix}$$

    $$=\begin{bmatrix} -1 & -2 & -2 \\ -2 & -1 & -2  \\ -2 & -2 & -1  \end{bmatrix}=-A$$
  • Question 8
    1 / -0
    If $$\displaystyle \:A= \left [ \begin{matrix}1 &2  &x \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]and \  B\left [ \begin{matrix}1 &-2  &y \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]$$ and  $$\displaystyle \:AB= I,$$ then $$x+y$$ equals 
    Solution
    $$\displaystyle \:A= \left [ \begin{matrix}1 &2  &x \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]$$  and $$B=\left [ \begin{matrix}1 &-2  &y \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]$$  
    Also given, $$\displaystyle \:AB= I$$
    $$\left[ \begin{matrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] =\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

    $$\Rightarrow \begin{bmatrix} 1 & 0 & x+y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
    $$\Rightarrow x+y=0$$
    Hence, option 'A' is correct.
  • Question 9
    1 / -0
    If $$A=\begin{bmatrix} 1 & tanx \\ -tanx & 1 \end{bmatrix}$$, then $${ A }^{ T }{ A }^{ -1 }$$ is
    Solution
    $$A=\begin{bmatrix} 1 & tanx \\ -tanx & 1 \end{bmatrix}$$

    $$\Rightarrow |A|=\sec^{2}x$$

    $$adj A=C^{T}={\begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}}^{T}$$

    $$\Rightarrow adj A=\begin{bmatrix} \cos ^{ 2 }{ x }  & -\sin { x } \cos { x }  \\ \sin { x } \cos { x }  & \cos ^{ 2 }{ x }  \end{bmatrix}$$

    $$A^{-1}=\displaystyle \frac {adj A}{|A|}$$
                 $$=\begin{bmatrix} \cos ^{ 2 }{ x }  & -\sin { x } \cos { x }  \\ \sin { x } \cos { x }  & \cos ^{ 2 }{ x }  \end{bmatrix}$$

    Now, $$A^{T}A^{-1}=\begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix} \begin{bmatrix} \cos ^{ 2 }{ x }  & -\sin { x } \cos { x }  \\ \sin { x } \cos { x }  & \cos ^{ 2 }{ x }  \end{bmatrix}$$

    $$\Rightarrow A^{T}A^{-1}=\begin{bmatrix} \cos { 2x }  & -\sin { 2x }  \\ \sin { 2x }  & \cos { 2x }  \end{bmatrix}$$


  • Question 10
    1 / -0
    If $$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}A=\begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$, then sum of all the elements of matrix $$A$$ is
    Solution
     $$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}A=\begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$
    let $$ A=\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}=\begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix} 2a-d & 2b-e & 2c-f \\ a & b & c \\ -3a+4d & -3b+4e & -3c+4f \end{bmatrix}=\begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$
    $$\Rightarrow 2a-d=-1,2b-e=-8,2c-f=-10$$ -----(1)
    and $$a=1,b=-2,c=-5$$ ----(2)
    from (1) and (2)
    $$a+b+c=-6$$ and $$d+e+f=7$$
    $$\therefore$$ Sum of all the elements in the matrix $$a+b+c+d+e+f=1$$
    Hence, option B.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now