Self Studies

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\begin{bmatrix} x & -3 \\ -9 & y \end{bmatrix}\begin{bmatrix} 4 & -3 \\ 9 & 7 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$ then $$x=$$ .......... $$, y $$ $$=$$ ........

  • Question 2
    1 / -0

    If $$A= \begin{bmatrix}
    2 &  3   \\
    3  & 2      
    \end{bmatrix},$$ $$B= \begin{bmatrix}
    2  & 1   \\
    3  & 5      
    \end{bmatrix}$$ and $$C= \begin{bmatrix}
    0  & 1   \\
    1  & 2      
    \end{bmatrix},$$ then $$\left ( AB \right )\times C=$$

  • Question 3
    1 / -0

    If  $$A=\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$ , $$B=\begin{bmatrix} 3 & 2 & 0 \\ 1 & 0  & 4  \end{bmatrix}$$, then $$AB=$$ is

  • Question 4
    1 / -0

    Let  $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\   and\  B=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix},  a,b\in N.$$ Then:

  • Question 5
    1 / -0

    If A = $$\begin{bmatrix}
     2\ \ \ 4 \\
     3\ \ 5
    \end{bmatrix},$$ $$B= \begin{bmatrix}
     x\ \ \ y \\
     6\ \ \ 5
    \end{bmatrix}$$ and  $$AB= \begin{bmatrix}8\ \ \ 2 \\
     6\ \ \ -2 
    \end{bmatrix}$$
    then $$x= $$ ______, and $$y = $$ _____.

  • Question 6
    1 / -0

    If $$A=\begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix},  B=\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\  -1 & 1 & 2 \end{bmatrix}$$  then  $$AB=$$

  • Question 7
    1 / -0

    $$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1  \end{bmatrix}, \text{then} \,A^{3}-4A^{2}-6A=$$

  • Question 8
    1 / -0

    If $$\displaystyle \:A= \left [ \begin{matrix}1 &2  &x \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]and \  B\left [ \begin{matrix}1 &-2  &y \\0  &1  &0 \\0  &0  &1 \end{matrix} \right ]$$ and  $$\displaystyle \:AB= I,$$ then $$x+y$$ equals 

  • Question 9
    1 / -0

    If $$A=\begin{bmatrix} 1 & tanx \\ -tanx & 1 \end{bmatrix}$$, then $${ A }^{ T }{ A }^{ -1 }$$ is

  • Question 10
    1 / -0

    If $$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}A=\begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$, then sum of all the elements of matrix $$A$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now