Self Studies

Application of Derivatives Test - 20

Result Self Studies

Application of Derivatives Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf the chord joining the points where $$x= p,\ x =q$$ on the curve $$y=ax^{2}+bx+c$$ is parallel to the tangent drawn to the curve at $$(\alpha, \beta)$$ then $$\alpha=$$
    Solution
    $$y'=2ax+b$$
    $$y'|_{x=b}=(2a\alpha +b)$$
    $$2a\alpha+b=\left ( \dfrac{y_{2}-y_{1}}{x_{2}-x_{1}} \right )$$
    $$2a\alpha+b=\dfrac{ap^{2}+bp-aq^{2}-bq}{(p-q)}$$
    $$=\dfrac{a(p-q)(p+q)+b(p-a)}{(p-q)}$$
    $$2a\alpha+b=a(p+q)+b$$
    $$\alpha=\left ( \dfrac{p+q}{2} \right )$$
  • Question 2
    1 / -0
    The arrangement of the following curves in the ascending order of slopes of their tangents at the given points.
    $$A) \displaystyle y=\frac{1}{1+x^{2}}$$ at $$x=0$$

    $$B) y=2e^{\frac{-x}{4}},$$ where it cuts the y-axis
    $$C) y= cos(x)$$ at $$\displaystyle x=\frac{-\pi}{4}$$
    $$D) y=4x^{2}$$ at $$x=-1$$
    Solution
    (A) $$y^{1}=-\frac{2x}{(1+x^{2})}$$
    $$y^{1}|_{x=0}=0$$

    (B) $$y^{1}=-\frac{2x}{(4}$$
    $$y^{1}|_{x=0}=-\frac{1}{2}$$

    (C) $$y^{1}=-sin\ x$$
    $$y^{1}|_{x=^{-pi}/_4}=\frac{1}{\sqrt{2}}$$

    (D) $$y^{1}=8x$$
    $$y^{1}|_{x=-1}=-8$$

    $$(C)>(A)>(B)>(D)$$
  • Question 3
    1 / -0
    Observe the following lists for the curve $$y=6+x-x^{2}$$ with the slopes of tangents at the given points; I, II, III, IV
    Point
    Tangent slope
    I: $$(1, 6)$$
    a) $$3$$
    II: $$(2, 4)$$
    b) $$5$$
    III: $$(-1, 4)$$
    c) $$-1$$
    IV: $$(-2, 0)$$
    d) $$-3$$
    Solution
    $$y^{'}=\ \ \ 1-2x$$
    (A) $$m_{1}=-1$$
    (B) $$m_{2}=-3$$
    (C) $$m_{3}=3$$
    (D) $$m_{4}=5$$
  • Question 4
    1 / -0
    The point on the hyperbola $$y = \dfrac {x - 1}{x + 1}$$ at which the tangents are parallel to $$y = 2x + 1$$ are
    Solution
    $${y}'=\dfrac{(x+1)-(x-1)}{(x+1)^{2}}$$
    $${y}'=2   (\therefore$$ parallel to $$y =2x+1)$$
    $$\dfrac{2}{(x+1)^{2}}=2$$
    $$(x+1)^{2}=1$$
    $$x=0$$ or  $$x=-2$$
    Using the equation of hyperbola, when $$x=0$$, $$y=-1$$. 
                                                         when $$x=-2$$, $$y=3$$
  • Question 5
    1 / -0
    The number of tangents to the curve $$x^{3/2}+y^{3/2}=a^{3/2}$$, where the tangents are equally inclined to the axes, is
    Solution
    $$\dfrac{dy}{dx}=-1$$ (where x is equally inclined)
    $$\dfrac{3}{2}x^{^{1}/_{2}}+^{3}/_{2}y^{^{1}/_{2}}\dfrac{dy}{dx}=0$$
    $$\dfrac{dy}{dx}=-\sqrt{\dfrac{x}{y}}=1$$
    $$-\sqrt{\dfrac{x}{y}}=-1$$
    $$\sqrt{x}=\sqrt{y}$$
    $$x=y$$
    $$x^{^{3}/_{2}}+x^{^{3}/_{2}}=a^{^{3}/_{2}}$$
    $$2x^{^{3}/_{2}}=a^{^{3}/_{2}}$$
    $$x=\dfrac{a}{2^{^{2}/_{3}}}$$
    $$y=\dfrac{a}{2^{^{2}/_{3}}}$$
    $$\therefore$$ only one tangent.
  • Question 6
    1 / -0
    The points on the hyperbola $$x^{2}-y^{2}=2$$ closest to the point (0, 1) are
    Solution
    Let point be $$(\sqrt 2 sec\theta,\sqrt 2 tan\theta)$$ closest to (0, 1)
    So distance $$=\sqrt {2 sec^2\theta+(\sqrt 2 tan\theta-1)^2}$$
    $$=\sqrt {2 sec^2\theta+2tan^2\theta-2\sqrt 2 tan\theta+1}$$
    $$=\sqrt {4 tan^2\theta-2\sqrt 2 tan\theta+3}$$
    $$=2\sqrt {tan^2\theta-\frac {tan\theta}{\sqrt 2}+\frac {3}{4}}$$
    $$=2\sqrt {(tan\theta-\frac {1}{2\sqrt 2})^2+\frac {3}{4}-\frac {1}{8}}$$
    So distance is min when $$tan\theta=\frac {1}{2\sqrt 2}$$
    $$sec\theta=\pm \frac {3}{2\sqrt 2}$$
  • Question 7
    1 / -0
    If the circle $$x^2 + y^2 + 2gx + 2fy + c =0$$ is touched by y = x at P in the first quadrant, such that $$OP = 6 \sqrt2$$, then the value of $$c$$ is
    Solution
    Let the point of contact be $$x_{1},y_{1}$$
    However it lies on the line $$y=x$$
    Hence
    $$x_{1}=y_{1}$$
    Applying distance formula, we get
    $$\sqrt{x_{1}^2+x_{1}^2}=6\sqrt{2}$$
    $$2x_{1}^2=72$$
    $$x_{1}=6$$ ...(positive, since it lies on y=x.)
    Differentiating the equation of circle with respect to x.
    $$2x+2yy'+2g+2fy'=0$$
    Now $$y'=1$$ since $$y'$$ is the slope of the line $$y=x$$.
    By substituting, we get
    $$x+y=-(g+f)$$
    Now $$x_{1}=y_{1}=6$$
    Hence
    $$12=-(g+f)$$ ...(i)
    Substituting $$x=y=6$$ in the equation of the circle, we get
    $$36+36+2(6)(g+f)+c=0$$
    $$72+12(-12)+c=0$$
    $$c=144-72$$
    $$c=72$$
  • Question 8
    1 / -0
    lf the tangent to the curve $$f(x)=x^{2}$$ at any point $$(c, f(c))$$ is parallel to the line joining points $$(a, f(a))$$ and $$(b,f(b))$$ on the curvel then $$a,\ c,\ b$$ are in
    Solution
    $$\partial^{'}M=2s$$ at $$(c,\ \partial(c))=2c$$
    $$\dfrac{\partial(a)-\partial(L)}{a-b}=2c$$
    $$\dfrac{a^{2}=b^{2}}{a-b}=2c$$
    $$a+b=2c$$
    $$\therefore\ a,c,b$$ are in AP
  • Question 9
    1 / -0
    $$\Delta (x)=\begin{vmatrix}
    \sin  x & \cos  x  &\sin  2x+\cos  2x \\
    0 &1  &1 \\
    1 &0  &-1
    \end{vmatrix}$$
    $${\Delta }'(x)$$ vanishes at least once in
    Solution
    $$\Delta' (x)=\begin{vmatrix}
    \cos  x &-\sin  x  &2\cos  2x-2 \sin  2x \\ 0 &1  &1 \\ 1 &0  &-1 \end{vmatrix}$$ 

    $$\Rightarrow \Delta' (x)= -\cos x - \sin x -1(2\cos2x - 2\sin2x)$$ 
    (Expanded along first column)

    $$\Rightarrow \Delta' (x)= 2\sin2x -\cos x - \sin x -2\cos2x $$ 

    Clearly,
    $$ \Delta' (x)$$ is continuous and $$ \Delta' (0) =-3 < 0 $$ and $$ \Delta' \left(\dfrac{\pi}{2}\right)= 1 > 0$$
    Hence, 
    $$ \Delta' (x)$$ will vanish at least once in $$\left(0, \dfrac{\pi}{2}\right)$$

    Hence, option A.
  • Question 10
    1 / -0
    For the curve $$ y=3\sin \theta\cos\theta,  x=e^{\theta}\sin \theta,  0\leq \theta\leq\pi$$; the tangent is parallel to $$x$$ -axis when $$\theta$$ is
    Solution
    $$\dfrac{dy}{dx}=0$$
    $$\dfrac{dy}{d\theta}=d\dfrac{3}{2}(sin2\theta)$$
    $$\dfrac{dy}{d\theta}=d\dfrac{3}{4}(cos2\theta)$$ ---- (1)
    $$\dfrac{dy}{d\theta}=e^{\theta}sin\theta+e^{\theta}cos\theta$$ ---- (2)
    $$\dfrac{dx}{dy}=\dfrac{3}{4}\dfrac{cos2\theta}{e^{\theta}(sin\ \theta+ cos\ \theta)}=0$$
    $$cos2\theta=0$$
    $$2\theta={\pi}/{2}$$
    $$\theta={\pi}/{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now