Self Studies

Application of Derivatives Test - 46

Result Self Studies

Application of Derivatives Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The values of $$x$$ satisfying $$\left| sinx \right| ^{\left| cosx \right|} +log_\left| cosx \right| \left| sinx \right| =2,$$ where $$x\epsilon (0,\dfrac{\pi}{2}),$$ is  
    Solution

  • Question 2
    1 / -0
    The slope of the straight line which is both tangent and normal to the curve $$4x^3=27y^2$$ is 
    Solution
      $$ Given: $$
     $$ 4{{x}^{3}}=27{{y}^{2}} $$
     $$ differentiating\,w.r.t.x $$
     $$ 12{{x}^{2}}=54yy' $$
     $$ t $$
     $$ The\text{ line is tangent at}\,\text{P}\left( 3{{t}^{2}},2{{t}^{3}} \right)and\,normal\,at\left( 3t_{1}^{2},2t_{1}^{3} \right) $$
     $$ \frac{dy}{dx}=\frac{2\left( 9{{t}^{4}} \right)}{9\left( 2{{t}^{3}} \right)}=1 $$
     $$ equation\,to\,\tan gent\,P\left( t \right)is $$
     $$ y-2{{t}^{3}}=t\left( x-3{{t}^{2}} \right) $$
     $$ \Rightarrow tx-y={{t}^{3}}\,\,\,\,\,........\left( i \right) $$
     $$ Equation\,to\,normal\,atQ\left( t_{1}^{{}} \right)is $$
     $$ y-2t_{1}^{3}=-\frac{1}{t_{1}^{{}}}\left( x-3t_{1}^{2} \right) $$
     $$ \Rightarrow x+t_{1}^{{}}y=2t_{1}^{4}+3t_{1}^{2}\,\,\,\,\,\,\,\,...........\left( ii \right) $$
     $$ \left( i \right)\,and\left( ii \right)are\,identical $$
     $$ \frac{t}{1}=\frac{-1}{t_{1}^{{}}}=\frac{{{t}^{3}}}{2t_{1}^{4}+3t_{1}^{2}} $$
     $$ \Rightarrow {{t}^{2}}=\frac{2}{{{t}^{4}}}+\frac{3}{{{t}^{2}}}\,\,\,\,\,\,\,\,or\,\,t_{1}^{{}}=-\frac{1}{t} $$
     $$ \Rightarrow {{t}^{6}}=2+3{{t}^{2}} $$
     $$ \Rightarrow {{t}^{6}}-3{{t}^{2}}-2=0 $$
     $$ \Rightarrow {{t}^{2}}=2 $$
     $$ t=\pm \sqrt{2} $$

  • Question 3
    1 / -0
    The function $$f(x)=log x$$
    Solution
    Given, $$ f(x) = \log x \\ \therefore f^{'}(x)= \dfrac{1}{x} \, \textrm{and} \, f^{"}(x) = \dfrac{1}{x^2}$$
    For maxima or minima $$ f^{'}(x) = 0 $$
    Hence,$$ \dfrac{1}{x} = 0 \\ $$
    $$ \therefore $$ x is undefined.
    Therefore this function has neither maxima nor minima.
  • Question 4
    1 / -0
    Let $$g(x)=\displaystyle \int _{1-x}^{1+x}t|f'(t)|dt$$, where $$f(x)$$ does not behave like a constant function in any interval $$(a,b)$$ and the graph of $$y=f'(x)$$ is symmetric about the line $$x=1$$, then
  • Question 5
    1 / -0
    Three normals are drawn from the point $$\left(c,0\right)$$ to the curve $${y}^{2}=x.$$If two of the normals are perpendicular to each other,then $$c=$$
    Solution
      $$ Let\,the\text{ equation of normal to }{{\text{y}}^{2}}=4ax\,is $$
     $$ y=mx-2am-a{{m}^{2}} $$
     $$ \therefore equation\,of\,normal\,for\,{{y}^{2}}=x\,is $$
     $$ y=mx-\frac{m}{2}-\frac{1}{4}{{m}^{3}}which\,passes\,through\left( c,0 \right) $$
     $$ \therefore 0=m\left( c-\frac{1}{2}-\frac{{{m}^{2}}}{4} \right) $$
     $$ \Rightarrow m=0\,\,and\,\frac{{{m}^{2}}}{4}=c-\frac{1}{2} $$
     $$ \Rightarrow m=\pm 2\sqrt{c-\frac{1}{2}} $$
     $$ \text{which gives a normal as x-axis  and for other two normal} $$
     $$ c-\frac{1}{2}>0 $$
     $$ \Rightarrow c>\frac{1}{2} $$
     $$ N\text{ow, if normals are perpendicular}\text{.} $$
     $$ \left( 2\sqrt{c-\frac{1}{2}} \right)\left( -2\sqrt{c-\frac{1}{2}} \right)=-1 $$
     $$ \Rightarrow c-\frac{1}{2}=\frac{1}{4} $$
     $$ \Rightarrow c=\frac{3}{4} $$

  • Question 6
    1 / -0
    The function $$f(x)=\dfrac{x}{x^2+1}$$ increasing, if 
    Solution

  • Question 7
    1 / -0
    The approximate value of $$\sqrt[10]{0.999}$$ is 
    Solution

  • Question 8
    1 / -0
    If the line $$x+y=0$$ touches the curve $$2y^2=\alpha x^2+\beta $$ at $$(1,-1),$$ then $$(\alpha ,\beta )=$$
    Solution
    Given equation of curve is,
    $$2{ y }^{ 2 }=\alpha { x }^{ 2 }+\beta $$

    Point $$\left( 1,-1 \right) $$ lies on the curve. Thus, it must satisfy given equation of curve.

    $$\therefore 2{ \left( -1 \right)  }^{ 2 }=\alpha { \left( 1 \right)  }^{ 2 }+\beta $$

    $$\therefore 2\left( 1 \right) =\alpha { \left( 1 \right)  }+\beta $$

    $$\therefore 2=\alpha +\beta $$           (1)

    Now, equation of tangent to curve is,
    $$x+y=0$$
    $$\therefore y=-x$$

    Thus, slope of tangent is, $${ m }_{ 1 }=-1$$         (2)

    Equation of the curve is,
    $$2{ y }^{ 2 }=\alpha { x }^{ 2 }+\beta $$
    Differentiate w.r.t. x, we get,

    $$2\times 2y\frac { dy }{ dx } =2\alpha x+0$$

    $$\therefore 4y\frac { dy }{ dx } =2\alpha x$$

    $$\therefore \frac { dy }{ dx } =\frac { 2\alpha x }{ 4y } $$

    Slope of curve at $$\left( 1,-1 \right) $$ is,
    $${ m }_{ 2 }=\frac { 2\alpha \times 1 }{ 4\times -1 } $$

    $${ m }_{ 2 }=\frac { 2\alpha  }{ -4 } $$

    $$\therefore { m }_{ 2 }=\frac { \alpha  }{ -2 } $$      (3)

    At point $$\left( 1,-1 \right) $$, slope of tangent and normal will be same.
    Thus, from equation (2) and (3),

    $$\frac { \alpha  }{ -2 } =-1$$

    $$\therefore \alpha =2$$

    Put this value in equation (1), we get,

    $$2+\beta =2$$

    $$\therefore \beta =0$$
    $$\therefore \left( \alpha ,\beta  \right) =\left( 2,0 \right) $$
  • Question 9
    1 / -0
    Let $$f ( x ) = \frac { \csc x + \cot x - 1 } { 1 + \cot x - \csc x }$$. The primitive of $$f ( x )$$ with respect to $$x$$ is equal to (Where $$C$$ is constant of integration.)
    Solution

  • Question 10
    1 / -0
    Let A = {1, 2, ......... 10} and B = {1, 2, .......... 5}
    f : A $$\rightarrow$$ B is a non-decreasing into function, then number of such function is 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now