Self Studies

Application of ...

TIME LEFT -
  • Question 1
    1 / -0

    The values of $$x$$ satisfying $$\left| sinx \right| ^{\left| cosx \right|} +log_\left| cosx \right| \left| sinx \right| =2,$$ where $$x\epsilon (0,\dfrac{\pi}{2}),$$ is  

  • Question 2
    1 / -0

    The slope of the straight line which is both tangent and normal to the curve $$4x^3=27y^2$$ is 

  • Question 3
    1 / -0

    The function $$f(x)=log x$$

  • Question 4
    1 / -0

    Let $$g(x)=\displaystyle \int _{1-x}^{1+x}t|f'(t)|dt$$, where $$f(x)$$ does not behave like a constant function in any interval $$(a,b)$$ and the graph of $$y=f'(x)$$ is symmetric about the line $$x=1$$, then

  • Question 5
    1 / -0

    Three normals are drawn from the point $$\left(c,0\right)$$ to the curve $${y}^{2}=x.$$If two of the normals are perpendicular to each other,then $$c=$$

  • Question 6
    1 / -0

    The function $$f(x)=\dfrac{x}{x^2+1}$$ increasing, if 

  • Question 7
    1 / -0

    The approximate value of $$\sqrt[10]{0.999}$$ is 

  • Question 8
    1 / -0

    If the line $$x+y=0$$ touches the curve $$2y^2=\alpha x^2+\beta $$ at $$(1,-1),$$ then $$(\alpha ,\beta )=$$

  • Question 9
    1 / -0

    Let $$f ( x ) = \frac { \csc x + \cot x - 1 } { 1 + \cot x - \csc x }$$. The primitive of $$f ( x )$$ with respect to $$x$$ is equal to (Where $$C$$ is constant of integration.)

  • Question 10
    1 / -0

    Let A = {1, 2, ......... 10} and B = {1, 2, .......... 5}
    f : A $$\rightarrow$$ B is a non-decreasing into function, then number of such function is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now