Self Studies

Application of Derivatives Test - 47

Result Self Studies

Application of Derivatives Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Equation of the tangent at (1, -1) to the curve
    $${ x }^{ 3 }-x{ y }^{ 2 }-4{ x }^{ 2 }-xy+5x+3y+1=0$$ is 
    Solution

  • Question 2
    1 / -0
    The angle between the curves $$y = \sin x$$ and $$y = \cos x$$ is 
    Solution
    C₁ : $$y = \sin x$$, C₂ : $$y = \cos x$$.
    Equating the $$y$$' s,
    $$\sin x = \cos x$$ ∴ $$x = \dfrac{\pi}{4} $$
    ∴ curves intersect each other at the point P : $$x = \dfrac{\pi}{4}$$.
    Now, differentiating w.r.t. $$x$$,
    C₁ gives : $$\dfrac{dy}{dx} = \cos x$$ 
    C₂ gives : $$\dfrac{dy}{dx} = - \sin x$$. 
    Hence slopes $m₁ and m₂ of C₁ and C₂ at P : $$x = \dfrac{π}{4}$$ are
    m₁ $$= \cos \dfrac{π}{4} = \dfrac{1}{√2}$$ 
    m₂ =$$ - \sin \dfrac{π}{4} = -\dfrac{1}{√2}$$.
    If $$θ$$ is the acute angle between them at $$P$$, then 
    $$tan θ =\dfrac{ | ( m₁ - m₂ )|}{ |( 1 + m₁m₂ ) |}$$ 
    $$=\dfrac{ | ((\dfrac{1}{√2}) - (-\dfrac{1}{√2}))| }{ |( 1 + (\dfrac{1}{√2})(-\dfrac{1}{√2})) | }$$
    $$=\dfrac{ | 2( \dfrac{1}{√2 })|}{  |( \dfrac{(2-1)} { (2)} | }$$
     $$= 2√2 $$
    ∴ $$θ = \tanֿ¹ ( 2√2 ) $$
  • Question 3
    1 / -0
    If $$-4\le x\le 4$$, then critical points of $$f\left( x \right) ={ x }^{ 2 }-6\left| x \right| +4$$ are 
    Solution
    For $$x\geq 0$$:
    $$f(x)=x^2-6x+4$$
    $$f'(X)=2x-6$$
    For critical point $$f'(x)=0$$
    Hence $$x=3$$

    For $$x\leq 0$$:
    $$f(x)=x^2+6x+4$$
    $$f'(X)=2x+6$$
    For critical point $$f'(x)=0$$
    Hence $$x=-3$$

    Also the curve is similar about line $$x=0$$ i.e. $$y-axis$$
    Hence function have a critical point at $$x=0$$

    So the critical points are $$0,3,-3$$

  • Question 4
    1 / -0
    The tangent to the curve, $$y = xe^{x^2}$$ passing through the point $$(1, e)$$ also passes through the point:
    Solution
    $$y = xe^{x^2}$$

    $$\dfrac{dy}{dx}\left|_{(1,e)} = \left(x\cdot e^{x^2} \cdot 2x+e^{x^2}\right)\right|_{1,e} = 2\cdot e + e = 3e$$

    $$T : y - e = 3e (x - 1)$$

    $$y = 3ex - 3e + e$$

    $$y = (3e) x - 2e$$

    Out of the options only option:A

    $$\left(\dfrac{4}{3}, 2e\right)$$ lies on it as $$2e=3e\times  \dfrac 43-2e\Rightarrow 2e=2e$$
  • Question 5
    1 / -0
    The angle made by the tangent at any point on the curve $$x=a(t+\sin { t } \cos { t } ),y=a{ (1+\sin { t } ) }^{ 2 }$$ with x-axis is
    Solution
    Given,

    $$x=a(t+\sin t \cos t)$$

    $$\dfrac{dx}{dt}=\dfrac{d}{dt}a(t+\sin t \cos t)$$

    $$\therefore \dfrac{dx}{dt}=a[1+\cos ^2t-\sin ^2t]=a\left(1+\cos \left(2t\right)\right)=2a\cos ^2t$$

    $$y=a(1+\sin t)^2$$

    $$\dfrac{dy}{dt}=\dfrac{d}{dt}a(1+\sin t)^2$$

    $$\therefore \dfrac{dy}{dt}=2a\left(1+\sin \left(t\right)\right)\cos \left(t\right)$$

    $$\Rightarrow \dfrac{dy}{dx}$$

    $$=\dfrac{2a\left(1+\sin \left(t\right)\right)\cos \left(t\right)}{2a\cos ^2t}$$

    $$=\dfrac {1+\sin t}{\cos t}$$

    $$=\dfrac{\cos \frac{t}{2}+\sin \frac{t}{2}}{\cos \frac{t}{2}-\sin \frac{t}{2}}$$

    $$=\dfrac{1+\tan \frac{t}{2}}{1 -\tan \frac{t}{2}}$$

    $$=\tan \left ( \dfrac{\pi }{4}+\dfrac{t}{2} \right )$$

    angle made by tangent,

    $$\tan \theta =\tan \left ( \dfrac{\pi }{4}+\dfrac{t}{2} \right )$$

    $$\Rightarrow \theta =\dfrac{\pi }{4}+\dfrac{t}{2}$$
  • Question 6
    1 / -0
    The equation of the normal to the curve$$y=\left( 1+x \right) ^{ y }+{ sin }^{ -1 }\left( { sin }^{ 2 }x \right) at\quad x=0$$ is
    Solution
    Given,

    $$y=(1+x)^y+\sin ^{-1}(\sin ^2x)$$

    when $$x=0$$

    $$y=1^y+0=1$$

    $$\therefore (x_1,y_1)=(0,1)$$

    $$\dfrac{dy}{dx}=(1+x)^y\left [ \ln (1+x)\dfrac{dy}{dx}+\dfrac{y}{1+x} \right ]+\dfrac{2\sin x\cos x}{\sqrt{1-\sin ^4x}}$$

    $$\dfrac{dy}{dx}_{(0,1)}=1[1]+0$$

    $$\therefore \dfrac{dy}{dx}_{(0,1)}=1$$

    Therefore, slope of normal is $$-1$$

    Equation of normal,

    $$y-y_1=\dfrac{-1}{\frac{dy}{dx}}(x-x_1)$$

    $$y-1=(-1)(x-0)$$

    $$y-1=-x$$

    $$x+y=1$$ is the equation of normal
  • Question 7
    1 / -0
    If tangent at any point on the curve $${ y }^{ 2 }=1+{ x }^{ 2 }\ makes\ an\ angle\ \theta $$ with positive direction of the x-axis then
    Solution

  • Question 8
    1 / -0
    A particle moves along a line by $$s = \dfrac {1}{3} t^{3} - 3t^{2} + 8t + 5$$, it changes its direction when
    Solution
    A particle changes its direction, when, velocity is equal to zero

    Given,

    $$s=\dfrac{1}{3}t^3-3t^2+8t+5$$

    Velocity,

    $$v=\dfrac{ds}{dt}=\dfrac{1}{3}(3t^2)-6t+8$$

    $$\therefore v=t^2-6t+8$$

    when $$v=0$$ particle changes its direction,

    $$\Rightarrow t^2-6t+8=0$$

    $$(t-2)(t-4)=0$$

    $$\therefore t=2,4$$
  • Question 9
    1 / -0
    Length of the normal to the curve at any point on the curve $$y=\dfrac { a\left( { e }^{ x/a }+{ e }^{ -x/a } \right)  }{ 2 } $$ varies as 
    Solution
    Given,

    $$y=\dfrac{a(e^{\frac{x}{a}}+e^{-\frac{x}{a}})}{2}$$

    $$\Rightarrow y=a\cos h\left ( \dfrac{x}{a} \right )$$

    $$\dfrac{dy}{dx}=a \sin h\left ( \dfrac{x}{a} \right )\dfrac{1}{a}$$

    $$=\sin h\left ( \dfrac{x}{a} \right )$$

    Length of normal $$=y\left [ 1+\left (\dfrac{dy}{dx}  \right )^2 \right ]^{\frac{1}{2}}$$

    $$=a\cos h\left ( \dfrac{x}{a} \right )\left [ 1+ \sin ^2h\left ( \dfrac{x}{a} \right )\right ]^{\frac{1}{2}}$$

    $$=a\cos h\left ( \dfrac{x}{a} \right )\left [ \cos ^2h\left ( \dfrac{x}{a} \right ) \right ]^{\frac{1}{2}}$$

    $$=a\cos ^2h\left ( \dfrac{x}{a} \right )$$

    $$=a \times \dfrac{y^2}{a^2}$$

    $$=\dfrac{y^2}{a}$$

  • Question 10
    1 / -0
    Function $$f(x)=\dfrac { \lambda sinx+6cosx }{ 2sinx+3cosx } $$ is monotonic increasing If 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now