Self Studies

Application of ...

TIME LEFT -
  • Question 1
    1 / -0

    Equation of the tangent at (1, -1) to the curve
    $${ x }^{ 3 }-x{ y }^{ 2 }-4{ x }^{ 2 }-xy+5x+3y+1=0$$ is 

  • Question 2
    1 / -0

    The angle between the curves $$y = \sin x$$ and $$y = \cos x$$ is 

  • Question 3
    1 / -0

    If $$-4\le x\le 4$$, then critical points of $$f\left( x \right) ={ x }^{ 2 }-6\left| x \right| +4$$ are 

  • Question 4
    1 / -0

    The tangent to the curve, $$y = xe^{x^2}$$ passing through the point $$(1, e)$$ also passes through the point:

  • Question 5
    1 / -0

    The angle made by the tangent at any point on the curve $$x=a(t+\sin { t } \cos { t } ),y=a{ (1+\sin { t } ) }^{ 2 }$$ with x-axis is

  • Question 6
    1 / -0

    The equation of the normal to the curve$$y=\left( 1+x \right) ^{ y }+{ sin }^{ -1 }\left( { sin }^{ 2 }x \right) at\quad x=0$$ is

  • Question 7
    1 / -0

    If tangent at any point on the curve $${ y }^{ 2 }=1+{ x }^{ 2 }\ makes\ an\ angle\ \theta $$ with positive direction of the x-axis then

  • Question 8
    1 / -0

    A particle moves along a line by $$s = \dfrac {1}{3} t^{3} - 3t^{2} + 8t + 5$$, it changes its direction when

  • Question 9
    1 / -0

    Length of the normal to the curve at any point on the curve $$y=\dfrac { a\left( { e }^{ x/a }+{ e }^{ -x/a } \right)  }{ 2 } $$ varies as 

  • Question 10
    1 / -0

    Function $$f(x)=\dfrac { \lambda sinx+6cosx }{ 2sinx+3cosx } $$ is monotonic increasing If 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now