Self Studies

Differential Equations Test - 11

Result Self Studies

Differential Equations Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For $$x\epsilon R, x\neq 0$$, if $$y(x)$$ is a differentiable function such that $$x\int_{1}^{x}y (t) dt = (x + 1) \int_{1}^{x} t y (t) dt$$, then $$y (x)$$ equals:
    (Where C is a constant)
    Solution
    $$x\int_{1}^{x}y (t) dt = x \int_{1}^{x} ty (t) dt + \int_{1}^{x} ty (t) dt$$
    differentiate w.r. to x.
    $$\int_{1}^{x} y (t) dt + x [y (x) - y(1)] = \int_{1}^{x} ty (t) dt + x [xy (x) - y(1)] + xy (x) - y (1)$$
    $$\int_{1}^{x}  y (t) dt = \int_{1}^{x}t y (t) dt + x^{2} y (x) - y (1)$$
    diff. again w.r to x
    $$y(x) - y(1) = xy (x) - y(1) + 2xy (x) + x^{2}y^{'} (x)$$
    $$(1 - 3x) y (x) = x^{2}y^{'} (x)$$
    $$\dfrac {y^{'}(x)}{y(x)} = \dfrac {1 - 3x}{x^{2}}$$
    $$\dfrac {1}{y}\dfrac {dy}{dx} = \dfrac {1 - 3x}{x^{2}} \Rightarrow ln\ y = -\dfrac {1}{x} - 3 ln\ x$$
    $$ln (y x^{3}) = -\dfrac {1}{x}+lnc$$
    $$yx^{3} = ce^{-\dfrac {1}{x}}$$
    $$y = c\dfrac {e^{-\dfrac {1}{x}}}{x^{3}}$$ or $$y = \dfrac {ce^{-\dfrac {1}{x}}}{x^{3}}$$
  • Question 2
    1 / -0
    Let $$y = y(x)$$ be a solution of the differential equation, $$\sqrt{1-x^2}\dfrac{dy}{dx} + \sqrt{1-y^2} = 0, |x| < 1$$.
    If $$y\left(\dfrac{1}{2}\right) = \dfrac{\sqrt{3}}{2}$$, then $$y \left(\dfrac{-1}{\sqrt{2}}\right)$$ is equal to:
    Solution
    $$\sqrt{1 - x^2} \dfrac{dy}{dx} + \sqrt{1-y^2} = 0$$

    $$\Rightarrow \dfrac{dy}{\sqrt{1-y^2}} + \dfrac{dx}{\sqrt{1-x62}} = 0$$

    Taking integration

    $$\displaystyle\Rightarrow \int\dfrac{dy}{\sqrt{1-y^2}} + \int\dfrac{dx}{\sqrt{1-x^2}} = 0$$

    $$\Rightarrow \sin^{-1}y + \sin^{-1} x = c$$     ....(1)

    At $$x = \dfrac{1}{2}$$, $$y = \dfrac{\sqrt{3}}{2}$$

    $$\Rightarrow\sin^{-1} \left(\dfrac{\sqrt{3}}{2} \right) + \sin^{-1}\left(\dfrac{1}{2}\right) = c$$

    $$\Rightarrow\dfrac{\pi}3+\dfrac{\pi}6=c$$

    $$\Rightarrow c = \dfrac{\pi}{2}$$

    Put in equation (1)

    $$\sin^{-1} y = \cos^{-1}x$$

    $$y\left(\dfrac{-1}{\sqrt{2}}\right) = \sin\left(\cos^{-1}\left(\dfrac{-1}{\sqrt{2}}\right)\right) = \dfrac{1}{\sqrt{2}}$$

    $$\therefore$$ $$\boxed{y\left(\dfrac{-1}{\sqrt{2}}\right) = \dfrac{1}{\sqrt{2}}}.....Answer$$

    Hence option $$'B'$$ is the answer.
  • Question 3
    1 / -0
    The differential equation $$\displaystyle \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}=\frac{\sqrt{1-\mathrm{y}^{2}}}{\mathrm{y}}$$ determines a family of circles with:
    Solution
    $$\displaystyle \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}=\frac{\sqrt{1-\mathrm{y}^{2}}}{\mathrm{y}}$$

    $$\displaystyle \Rightarrow\int\frac{\mathrm{y}}{\sqrt{1-\mathrm{y}^{2}}}$$ dy $$=\displaystyle \int \mathrm{d}\mathrm{x}$$

    $$\Rightarrow-\sqrt{1-\mathrm{y}^{2}}=\mathrm{x}+\mathrm{c}$$

    $$\Rightarrow(\mathrm{x}+\mathrm{c})^{2}+\mathrm{y}^{2}=1
    $$ centre $$(-\mathrm{c}, 0)$$ ; radius $$\sqrt{\mathrm{c}^{2}-\mathrm{c}^{2}+1}=1$$.
  • Question 4
    1 / -0
    Check whether the function is homogenous or not. If yes then find the degree of the function
    $$g(x)=x^2-8x^3$$.
    Solution
    Given function is $$g\left( x \right) ={ x }^{ 2 }-8{ x }^{ 3 }$$
    To check its Homogenitiy, we find $$g(kx)$$ which gives,
    $$g\left( kx \right) ={ { k }^{ 2 }x }^{ 2 }-8{ k }^{ 3 }{ x }^{ 3 }$$
    Now,
    $$\cfrac { g\left( kx \right)  }{ g\left( x \right)  } =\cfrac { { k }^{ 2 }{ x }^{ 2 }-8{ k }^{ 3 }{ x }^{ 3 } }{ { x }^{ 2 }-8{ x }^{ 3 } } \neq { k }^{ n }$$ where $$k>0$$ and $$n$$ is an integer.
    $$\therefore$$ this function is not homogenous.
  • Question 5
    1 / -0
    Solution of differential equation $$\displaystyle \frac{dy}{dx} = sin  x  + 2x$$, is
    Solution
    $$\displaystyle \frac{dy}{dx} = sin  x + 2x$$
    $$y = - cos  x + \displaystyle \frac{2x^2}{2} = x^2 - cos  x + c$$
  • Question 6
    1 / -0
    The order of the differential equation
    $$2x^2\dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + y = 0$$ is
    Solution
    Order is the highest derivative in the equation. Here it is $$2$$
  • Question 7
    1 / -0
    The solution of $$\dfrac{dy}{dx}=e^{logx}$$ is:
    Solution
    $$\dfrac{dy}{dx}=e^{log\ x}=x$$
    $$\Rightarrow \int dy=\int xdx+c$$
    $$\Rightarrow y=\frac{x^{2}}{2}+c$$
    $$\Rightarrow 2y=x^{2}+c$$
  • Question 8
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{2x}{3y^{2}}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac { 2x }{ { 3y }^{ 2 } } $$

    $$\Rightarrow \int 3y^{2}dy=\int2xdx+c$$

    $$\rightarrow \dfrac{3y^{3}}{3}=\dfrac{2x^{2}}{2}+c$$

    $$\rightarrow y^{3}-x^{2}=c$$
  • Question 9
    1 / -0
    The solution of $$\dfrac{dy}{dx}-\dfrac{2xy}{1+x^{2}}=0$$ is
    Solution
    $$\dfrac{dy}{dx}=\dfrac{2xy}{1+x^{2}}$$

    $$\Rightarrow\displaystyle \int \dfrac{dy}{y}=\int \dfrac{2x}{1+x^{2}}dx$$

    $$\Rightarrow  \log\ y=\log(1+x^{2})c$$
    $$y=c(1+x^{2})$$
  • Question 10
    1 / -0
    The solution of $$x^{2} \cfrac{dy}{dx}=2$$ is
    Solution
    $$x^{2}\cfrac{dy}{dx}=2$$
    $$\int dy=\int \cfrac{2}{x^{2}}dx+c$$
    $$\Rightarrow y=\cfrac{-2}{x}+c$$
    $$\Rightarrow y+\cfrac{2}{x}=c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now