Self Studies

Differential Equations Test - 16

Result Self Studies

Differential Equations Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\dfrac{dy}{dx}=\dfrac{4x+2y+1}{x-2y+3}$$ is a differential equation of the type:
    Solution
    Homogeneous differential equations involve only derivatives of y and terms involving y, and they’re set to 0, as in this equation:
    $$\dfrac{d^4}{dx^4}+x\dfrac{d^2y}{dx^2}+y^2=02$$
    Non homogeneous differential equations are the same as homogeneous differential equations, except they can have terms involving only x (and constants) on the right side, as in this equation
    $$\dfrac{d^4}{dx^4}+x\dfrac{d^2y}{dx^2}+y^2=6x+3$$
  • Question 2
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{1+y^{2}}{\sec x}$$ is
    Solution
    $$\dfrac{dy}{dx}=(1+y^{2})\cos\ x$$
    $$\Rightarrow \int \dfrac{dy}{1+y^{2}}=\int \cos\ x\ dx$$
    $$\Rightarrow \tan^{-1}y=\sin\ x+c$$
  • Question 3
    1 / -0
    The solution of $$\dfrac{dy}{dx}+2x=e^{3x}$$ is:
    Solution
    $$\dfrac{dy}{dx}+2x=e^{3x}$$

    $$\Rightarrow dy=(e^{3x}-2x)dx$$

    $$\int dy =\int e^{3x}dx-2 \int x dx$$

    $$y=\dfrac{e^{3x}}{3}-\dfrac{2x^{2}}{2}+c$$

    $$y=\dfrac{e^{3x}}{3}-x^{2}+c$$
  • Question 4
    1 / -0
    The solution of $$x^{3}dy-y^{3}dx=0$$ is:
    Solution
    $$x^{3}dy-y^{3}dx=0$$

    $$\Rightarrow \int \dfrac{dy}{y^{3}}=\int \dfrac{dx}{x^{3}}+c$$

    $$\Rightarrow \dfrac{-1}{2y^{2}}=-\dfrac { 1 }{ 2{ x }^{ 2 } } +c$$

    $$\Rightarrow \dfrac{1}{x^{2}}-\dfrac{1}{y^{2}}=c$$
  • Question 5
    1 / -0
    The solution of $$\displaystyle \frac{dy}{dx}=\displaystyle \frac{3(y+1)}{x-2}$$ is:
    Solution

    $$\dfrac{dy}{dx}=\dfrac{3(y+1)}{x-2}$$


    $$\Rightarrow \int \dfrac{dy}{3(1+y)}=\int \dfrac{dx}{x-2}+c$$


    $$\Rightarrow \dfrac{1}{3}\log(1+y)=\log(x-2)+log\ c$$


    $$\Rightarrow \dfrac{1}{3}\log(1+y)=\log\ c(x-2)$$


    $$\log(1+y)=\log(c(x-2))^{3}$$


    $$\Rightarrow (1+y)=(x-2)^{3}c$$

  • Question 6
    1 / -0
    The solution of $$\dfrac{d^{2}y}{dx^{2}}=xe^{x}+1$$ is:
    Solution
    $$\dfrac{d}{dx}\left(\dfrac{dy}{dx} \right)=xe^{x}+1$$
    $$\displaystyle \Rightarrow \int d\left(\dfrac{dy}{dx} \right)=\int (xe^{x}+1)dx+c_{1}$$
    $$\displaystyle \Rightarrow \frac{dy}{dx}=xe^{x}-e^{x}+x+c_{1}$$
    $$\displaystyle \int dy =\int ( xe^{x}-e^{x}+x+c_{1})dx+c_{2}$$
    $$\displaystyle \Rightarrow \int dy =xe^{x}-e^{x}-e^{x}+\frac{x^{2}}{2}+c_{1}x+c_{2}$$
    $$\displaystyle \Rightarrow y= xe^{x}-2e^{x}+\frac{x^{2}}{2}+c_{1}x+c_{2}$$
    $$\displaystyle y=e^{x}(x-2)+\frac{x^{2}}{2}+c_{1}x+c_{2}$$
  • Question 7
    1 / -0
    The solution of the differential equation
    $$\displaystyle \frac{dy}{dx}=\displaystyle \frac{xy+y}{xy+x}$$ is
    Solution
    $$\displaystyle \dfrac{dy}{dx}=\displaystyle \dfrac{y(x+1)}{x(y+1)}$$
    $$\displaystyle \dfrac{(y+1)}{y}dy=\displaystyle \dfrac{(x+1)}{x}dx$$
    $$\displaystyle \int (1+{1}/{y})dy=\int (1+{1}/{x})dx+c_{1}$$
    $$\displaystyle \Rightarrow y+log\ y=x+log\ x+c_{1}$$
    $$\displaystyle (y-x)+log{y}/{x}=c_{1}$$
    $$\displaystyle \Rightarrow (y-x)=-log\ c_{2}-log{y}/_{x}$$  ,   $$c_{1}=-log\ c_{2}$$
    $$\displaystyle =-log(\ {c_{2}y}/{x})$$
    $$\displaystyle (y-x)=log(\ {c_{3}x}/{y})$$      ,    $$\displaystyle c_{3}={1}/{c_{2}}$$
  • Question 8
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\text{cosech }y$$ is:
    Solution
    $$\dfrac{dy}{dx}=\text{cosech }y$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac1{\text{sinh }y}$$
    $$\Rightarrow \sinh y\ dy =dx$$
    Integrating both sides, we get
    $$\displaystyle \int \sinh y\ dy=x+c$$
    $$\Rightarrow \cosh y =x+c$$
  • Question 9
    1 / -0
    The solution of $$(1+e^{x})ydy=e^{x}dx$$ is:
    Solution
    $$(1+e^{x})ydy=e^{x}dx$$

    $$\int ydy =\int (\dfrac{e^{x}}{1+e^{x}})dx+c$$

    $$\Rightarrow \dfrac{y^{2}}{2}=\log(1+e^{x})c$$
  • Question 10
    1 / -0
    The solution of the differential equation $$(1+x^{2})\displaystyle \frac{dy}{dx}=2 x \cot y$$, is:
    Solution
    Given:
    $$(1+x^{2})\displaystyle \frac{dy}{dx}=2x\ \cot\ y$$
    Rearranging this equation
    $$\displaystyle\dfrac{dy}{\cot y}=\displaystyle\frac{2x}{1+x^{2}}dx$$
    Integrating both sides, we get
    $$\displaystyle\int \tan\ y\ dy=\displaystyle \int \frac{2x}{1+x^{2}}dx+c$$
    $$\Rightarrow \log\left |\sec\ y \right |=\log(1+x^{2})+\log\ c$$
    $$\Rightarrow\log\ \sec\ y=\log\ c(1+x^{2})$$
    $$\Rightarrow \sec\ y=c(1+x^{2})$$
    where, $$c$$ is the constant of integration.
    Hence, option A.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now