Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    $$\dfrac{dy}{dx}=\dfrac{4x+2y+1}{x-2y+3}$$ is a differential equation of the type:

  • Question 2
    1 / -0

    The solution of $$\dfrac{dy}{dx}=\dfrac{1+y^{2}}{\sec x}$$ is

  • Question 3
    1 / -0

    The solution of $$\dfrac{dy}{dx}+2x=e^{3x}$$ is:

  • Question 4
    1 / -0

    The solution of $$x^{3}dy-y^{3}dx=0$$ is:

  • Question 5
    1 / -0

    The solution of $$\displaystyle \frac{dy}{dx}=\displaystyle \frac{3(y+1)}{x-2}$$ is:

  • Question 6
    1 / -0

    The solution of $$\dfrac{d^{2}y}{dx^{2}}=xe^{x}+1$$ is:

  • Question 7
    1 / -0

    The solution of the differential equation
    $$\displaystyle \frac{dy}{dx}=\displaystyle \frac{xy+y}{xy+x}$$ is

  • Question 8
    1 / -0

    The solution of $$\dfrac{dy}{dx}=\text{cosech }y$$ is:

  • Question 9
    1 / -0

    The solution of $$(1+e^{x})ydy=e^{x}dx$$ is:

  • Question 10
    1 / -0

    The solution of the differential equation $$(1+x^{2})\displaystyle \frac{dy}{dx}=2 x \cot y$$, is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now