Self Studies

Differential Equations Test - 23

Result Self Studies

Differential Equations Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solution of $$y-x\displaystyle \frac{dy}{dx}=3[1-x^{2}\frac{dy}{dx}]$$ is:
    Solution
    $$y-x\dfrac{dy}{dx}=3-3x^{2}\dfrac{dy}{dx}$$
    $$\Rightarrow (y-3)=(x-3x^2)\dfrac{dy}{dx}$$
    $$\Rightarrow \dfrac{dx}{x-3x}=\dfrac{dy}{y-3}$$

    $$\dfrac{dx}{(1-3x)}=\dfrac{dy}{y-3}$$
    $$\Rightarrow \int \dfrac{3}{x-3x}+\dfrac{1}{x}   dx=\int \dfrac{dy}{y-3}  -log c$$
    $$\Rightarrow -\log(1-3x)+\log x=\log(y-3)-\log c$$
    $$\Rightarrow \log x c=\log(y-3)(1-3x)$$
    $$\Rightarrow xc=(y-3)(1-3x)$$
  • Question 2
    1 / -0
    The solution of $$e^{x-y}dx+e^{y-x}dy=0$$ is:
    Solution
    $$\dfrac{e^{x}}{e^{y}}dx+\dfrac{e^{y}}{e^{x}}dy=0$$

    $$\Rightarrow \int e^{2x}dx+ \int e^{2y}=c_{1}$$

    $$\Rightarrow \dfrac{e^{2x}}{2}+\dfrac{e^{2y}}{2}=\dfrac{c_{1}}{2}$$

    $$\Rightarrow e^{2x}+e^{2y}=2c_{1}=c$$
  • Question 3
    1 / -0
    General solution of $$\displaystyle \frac{dy}{dx}=\frac{1}{\log_{x}e}$$ is given as $$y = $$
    Solution

    $$\dfrac{dy}{dx} = \dfrac{log x}{log e}$$

    $$\Rightarrow {dy} = \dfrac{log x}{log e} dx$$

    $$\Rightarrow \int dy = \int log_{e}  x + c$$

    $$\Rightarrow y = x (log_{e}  x-1) + c$$    $$ [\because\int logx=x(logx-1)]$$

  • Question 4
    1 / -0
    The solution of:  $$e^{x}\displaystyle \sqrt{1-y^{2}}dx+\frac{y}{x}dy=0$$
    Solution
    $$e^{x} \sqrt{1-y^{2}} dx + \dfrac{y}{x} dy = 0$$
    $$\Rightarrow  xe^{x} dx = -\dfrac{y}{\sqrt{1-y^{2}}} dy$$
    $$\Rightarrow \int xe^{x} dx = \int  \dfrac{-y}{\sqrt{1-y^{2}}} dy+c$$
    $$\Rightarrow (xe^{x}-e^{x}) = \sqrt{1-y^{2}} + c$$
    $$\Rightarrow e^{x} (x-1) = \sqrt{1-y^{2}} +c$$
  • Question 5
    1 / -0
    Solution of $$xe^{x^{2}+y}.dx=y.dy$$ is:
    Solution

    $$xe^{x^{2}} dx = ye^{-y} dy$$

    $$ \Rightarrow \dfrac{1}{2} \int 2xe^{x^{2}} dx = \int ye^{-y} dy$$

    $$\Rightarrow \dfrac{e^{x^{2}}}{2} = -ye^{-y} + (e-y_{dy})$$

    $$\dfrac{e^{x^{2}}}{2} = -ye^{-y} -e^{-y} + c$$

    $$\Rightarrow  e^{x^{2}} + e^{-y} (1+y)2= c$$

  • Question 6
    1 / -0
    The solution of $$\cos \mathrm{x}\cos \mathrm{y}\mathrm{d}\mathrm{x}+ \sin \mathrm{x} \sin \mathrm{y} d\mathrm{y} =0$$ is 
    Solution
    $$\Rightarrow \sin x  \sin y  dy = -\cos x  \cos y  dx$$

    $$\Rightarrow  \int  \tan y  dy = -\int  \cot x  dx$$

    $$ \Rightarrow log  \sec y=- \log  \sin x + \log c'$$

    $$ \Rightarrow log  \sec y= \log  cosec x + \log c'$$

    $$\Rightarrow log  \sec y= \log (  cosec x \times c')$$

    $$\Rightarrow \dfrac{1}{\cos y} = \dfrac{1}{c'  \sin x}$$

    $$\sin  x =  c  \cos  y$$
  • Question 7
    1 / -0
    Solution of $$\displaystyle \frac{dy}{dx}=4+4x-3y-3xy$$ is:
    Solution
    $$\dfrac{dy}{dx} = 4(1+x)-3y(1+x)$$
    $$\Rightarrow\displaystyle  \int \dfrac{dy}{4-3y} = \int (1+x)dx + c$$
    $$\Rightarrow -\dfrac{1}{3} log  (\dfrac{4}{3}-y) = x+\dfrac{x^{2}}{2} + c$$
    $$\Rightarrow c = \dfrac{2x+x^{2}}{2} + \dfrac{1}{3} log (\dfrac{4-3y}{3})$$
    $$\Rightarrow c= 6x+3x^{2} + 2log (4-3y)$$
  • Question 8
    1 / -0

    The solution of $$\displaystyle \frac{dy}{dx}=xy+x+y+1$$
    Solution
    $$\dfrac{dy}{dx} = x(y+1)+(y+1)$$
    $$ \Rightarrow  \int \dfrac{dy}{(y+1)} = \int dx (x+1) + c$$
    $$\Rightarrow Log (y+1) = \dfrac{x^{2}}{2} + x+c$$
    $$\Rightarrow (y+1) = c.e( \dfrac{x^{2}}{2} + x)$$
  • Question 9
    1 / -0
    The solution of $$\sin^{-1}ydx+\displaystyle \dfrac{x}{\sqrt{1-y^{2}}}dy=0$$ is:
    Solution

    Given  $$\sin^{-1}ydx+\displaystyle \dfrac{x}{\sqrt{1-y^{2}}}dy=0$$

    $$-\dfrac{dx}{x} = \dfrac{dy}{sin^{-1}y \sqrt{1-y^{2}}}$$

    $$let  \sin ^{-1}y = t$$

    $$\Rightarrow \dfrac{1}{\sqrt{1-y^{2}}}dy = dt$$

    $$\Rightarrow -\int \dfrac{dx}{x} = \int \dfrac{dt}{t} - log c$$

    $$ \Rightarrow log c = log  xt$$

    $$\Rightarrow c=xt$$

    $$\Rightarrow t = \dfrac{c}{x}$$

    $$sin ^{-1}y = \dfrac{c}{x}$$

    $$\Rightarrow y = sin (\dfrac{c}{x})$$

  • Question 10
    1 / -0
    lf the primitive of $$\displaystyle \frac{1}{f(x)}$$ is equal to $$\log\{f(x)\}^{2}+c$$, then $$f(x)$$ is:
    Solution
    Given $$\int { \frac { 1 }{ f\left( x \right)  }  } dx={ \log { \{ f(x)\}  }  }^{ 2 }+C$$
    $$\displaystyle \Rightarrow \int { \frac { 1 }{ f\left( x \right)  }  } dx=2{ \log { \{ f(x)\}  }  }+C$$
    $$\displaystyle\Rightarrow \frac{1}{f(x)}=2 \times \frac{1}{f(x)} \times f'(x) $$
    $$\Rightarrow f'(x)=\dfrac{1}{2}$$
    $$\displaystyle \Rightarrow f(x) =\frac{1}{2}\int dx $$
    $$\displaystyle \Rightarrow f(x) =\frac{x}{2}+d$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now