Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    Solution of $$y-x\displaystyle \frac{dy}{dx}=3[1-x^{2}\frac{dy}{dx}]$$ is:

  • Question 2
    1 / -0

    The solution of $$e^{x-y}dx+e^{y-x}dy=0$$ is:

  • Question 3
    1 / -0

    General solution of $$\displaystyle \frac{dy}{dx}=\frac{1}{\log_{x}e}$$ is given as $$y = $$

  • Question 4
    1 / -0

    The solution of:  $$e^{x}\displaystyle \sqrt{1-y^{2}}dx+\frac{y}{x}dy=0$$

  • Question 5
    1 / -0

    Solution of $$xe^{x^{2}+y}.dx=y.dy$$ is:

  • Question 6
    1 / -0

    The solution of $$\cos \mathrm{x}\cos \mathrm{y}\mathrm{d}\mathrm{x}+ \sin \mathrm{x} \sin \mathrm{y} d\mathrm{y} =0$$ is 

  • Question 7
    1 / -0

    Solution of $$\displaystyle \frac{dy}{dx}=4+4x-3y-3xy$$ is:

  • Question 8
    1 / -0


    The solution of $$\displaystyle \frac{dy}{dx}=xy+x+y+1$$

  • Question 9
    1 / -0

    The solution of $$\sin^{-1}ydx+\displaystyle \dfrac{x}{\sqrt{1-y^{2}}}dy=0$$ is:

  • Question 10
    1 / -0

    lf the primitive of $$\displaystyle \frac{1}{f(x)}$$ is equal to $$\log\{f(x)\}^{2}+c$$, then $$f(x)$$ is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now