Self Studies

Differential Equations Test - 32

Result Self Studies

Differential Equations Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the curve which passes through the point (1, 1) and whose slope is $$\dfrac{2y}{x} $$?
    Solution
    Let the curve be $$y=f\left( x \right) $$,
    $$\therefore$$ slope of the tangent drawn at any point on the curve is $$\dfrac { df\left( x \right)  }{ dx } =f^{ ' }\left( x \right) $$,
    Given that slope at any point on the curve is $$\dfrac { 2y }{ x } $$,
    $$\Longrightarrow \dfrac { dy }{ dx } =\dfrac { 2y }{ x } \\ \Longrightarrow \int { \dfrac { 1 }{ y }  } dy=\int { \dfrac { 2 }{ x }  } dx$$
    $$\Longrightarrow \ln { y } =2\ln { x } +c$$
    Where $$c$$ is the integration constant,
    Given that the curve passes through the point $$(1,1)$$,
    $$\Longrightarrow c=0$$,
    $$\therefore y={ x }^{ 2 }$$ is the equation of the curve which is a parabola.
  • Question 2
    1 / -0
    If $$x  dy = y  dx + y^2 dy, y > 0$$ and y(1) = 1, then what is y(-3) equal to?
    Solution
    Given Differential equation is $$xdy=ydx+{ y }^{ 2 }dy$$,
    $$\Longrightarrow \dfrac { dx }{ dy } =\dfrac { x }{ y } -y$$,
    $$\Longrightarrow \dfrac { dx }{ dy } -\dfrac { x }{ y } =-y$$ this is a linear differential equation in $$y$$,
    The integrating factor is $$\dfrac { 1 }{ y } $$,
    Now the differential equation becomes,
    $$\dfrac { 1 }{ y } \dfrac { dx }{ dy } -\dfrac { x }{ { y }^{ 2 } } =-1$$,
    $$\Longrightarrow \dfrac { x }{ y } =\int { -1dy } \\ \Longrightarrow \dfrac { x }{ y } =-y+c\\ $$,
    Given that $$y(1)=1$$,
    $$c=2$$,
    to find $$y(-3)$$,
    $$\Longrightarrow { y }^{ 2 }-2y-3=0$$,
    Solving the quadratic equation gives,
    $$y=-1\  and\  y=3$$,
    Given that $$y>0$$,
    $$\therefore y=3\ only$$

  • Question 3
    1 / -0
    Solution of the differential equation $$\dfrac { dx }{ x } +\dfrac { dy }{ y } =0$$ is
    Solution
    $$\dfrac { dx }{ x } +\dfrac { dy }{ y } =0$$
    Integrating , we get
    $$ \Rightarrow \int { \dfrac { dx }{ x }  } +\int { \dfrac { dy }{ y }  } =0$$ 
    $$\Rightarrow \log(x)+\log(y)=k$$ 
    $$\Rightarrow xy={ e }^{ k }=c$$ 
    $$\Rightarrow xy=c$$
    Hence, option C is correct. 
  • Question 4
    1 / -0
    A solution of the differential equation $${ \left( \dfrac { dy }{ dx }  \right)  }^{ 2 }-x\dfrac { dy }{ dx } +y=0$$ is
    Solution
    Let $$p = \dfrac{dy}{dx}$$.
    Therefore, the given equation becomes 
    $$p^2-xp+y=0\implies y = px-p^2$$
    On differentiating wrt x, we get
    $$\dfrac{dy}{dx} = p + x\dfrac{dp}{dx}-2p\dfrac{dp}{dx} $$
    $$\Rightarrow  p = p + x\dfrac{dp}{dx}-2p\dfrac{dp}{dx} $$
    $$\Rightarrow \dfrac{dp}{dx}(x-2p) = 0 $$
    $$\Rightarrow \dfrac{dp}{dx} = 0 $$ or $$x-2p = 0 $$
    Now, $$x-2p = 0$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{2}$$
    $$\Rightarrow  y=\dfrac{x^2}{4}+c$$
    Also from the other equality,
    $$\dfrac{dp}{dx} = 0 \Rightarrow  p = k $$ (constant) 
    Substituting $$p=k$$ in the given equation, we get
    $$y = kx-k^2$$
    On comparing the given options with the obtained solutions  
    $$y = kx-k^2$$ and $$y = \dfrac{x^2}{4}+c$$ 
    We get that the only possible solution is $$y=2x-4$$.
  • Question 5
    1 / -0
    The solution of differential equation
    $$4xy\cfrac { dy }{ dx } =\cfrac { 3{ \left( 1+x \right)  }^{ 2 }\left( 1+{ y }^{ 2 } \right)  }{ \left( 1+{ x }^{ 2 } \right)  } $$ is 
    Solution
    Given, $$4xy\cfrac { dy }{ dx } =\cfrac { 3{ \left( 1+x \right)  }^{ 2 }\left( 1+{ y }^{ 2 } \right)  }{ \left( 1+{ x }^{ 2 } \right)  } $$

    $$\Rightarrow \cfrac { 4ydy }{ 1+{ y }^{ 2 } } =\cfrac { 3{ \left( 1+x \right)  }^{ 2 } }{ x({ 1+x }^{ 2 }) } dx\quad $$

    $$\Rightarrow \cfrac { 4ydy }{ 1+{ y }^{ 2 } } =\left( \cfrac { 3 }{ x } +\cfrac { 6 }{ { 1+x }^{ 2 } }  \right) dx$$

    Integrating both sides

    $$\displaystyle \Rightarrow \int\cfrac { 4ydy }{ 1+{ y }^{ 2 } } =\int \left( \cfrac { 3 }{ x } +\cfrac { 6 }{ { 1+x }^{ 2 } }  \right) dx$$

    $$\Rightarrow 2\log { \left( 1+{ y }^{ 2 } \right)  } =3\log { x } +6\tan ^{ -1 }{ x } +C\quad $$
  • Question 6
    1 / -0
    The solution of the differential equation $$\dfrac { dy }{ dx } +\sin { \left( \dfrac { y+x }{ 2 }  \right)  } +\sin { \left( \dfrac { y-x }{ 2 }  \right)  } =0$$ is
    Solution
    Given differential equation can be rewritten as
    $$\dfrac { dy }{ dx } =\sin { \left( \dfrac { x-y }{ 2 }  \right)  } -\sin { \left( \dfrac { x+y }{ 2 }  \right)  } $$
         $$=2\cos { \left( \dfrac { x }{ 2 }  \right)  } \sin { \left( \dfrac { -y }{ 2 }  \right)  } $$
         $$=-2\cos { \left( \dfrac { x }{ 2 }  \right)  } \sin { \left( \dfrac { y }{ 2 }  \right)  } $$
    $$\Rightarrow \displaystyle\int { \dfrac { dy }{ 2\sin { \left( \dfrac { y }{ 2 }  \right)  }  }  } =-\displaystyle\int { \cos { \left( \dfrac { x }{ 2 }  \right)  } dx }$$
    $$\Rightarrow \dfrac { 1 }{ 2 } \displaystyle\int { \csc { \left( \dfrac { y }{ 2 }  \right)  } dy } =-\dfrac { \sin { \left( \dfrac { x }{ 2 }  \right)  }  }{ \left( \dfrac { 1 }{ 2 }  \right)  } +C$$
    $$\Rightarrow \dfrac { 1 }{ 2 } \dfrac { \log { \left( \csc { \left( \dfrac { y }{ 2 }  \right)  } -\cot { \left( \dfrac { y }{ 2 }  \right)  }  \right)  }  }{ \left( \dfrac { 1 }{ 2 }  \right)  } =-\dfrac { \sin { \left( \dfrac { x }{ 2 }  \right)  }  }{ \left( \dfrac { 1 }{ 2 }  \right)  } +C$$
    $$\Rightarrow \log { \tan { \left( \dfrac { y }{ 4 }  \right)  }  } =-2\sin { \left( \dfrac { x }{ 2 }  \right)  } +C$$
  • Question 7
    1 / -0
    The solution of $$ \dfrac {dy}{dx} + \sqrt{ \left( \dfrac {1-y^2}{1-x^2} \right) } = 0 $$ is :
    Solution
    Given, equation is $$ \dfrac {dy}{dx} + \sqrt{ \left( \dfrac {1-y^2}{1-x^2} \right) } = 0 $$
    Dividing the above equation by $$\sqrt{1-y^{2}}$$ on both sides

    $$\implies \dfrac {dy}{\sqrt{1-y^2}} +\dfrac{1}{\sqrt{1 - x^2}} dx = 0 $$
    On integrating, we get 
    $$\displaystyle \int \dfrac {dy}{\sqrt{1-y^2}} + \int \dfrac{1}{\sqrt{1 - x^2}} dx= 0 $$
    $$\implies \sin^{-1} y + \sin^{-1} x = C $$
  • Question 8
    1 / -0
    The solution of the differential equation $$\dfrac { dy }{ dx } ={ e }^{ x-y }\left( { e }^{ x }-{ e }^{ y } \right) $$ is
    Solution
    Given equation can be rewritten as
    $$\dfrac { dy }{ dx } =\dfrac { { e }^{ x } }{ { e }^{ y } } \left( { e }^{ x }-{ e }^{ y } \right) $$ 
    $$\Rightarrow { e }^{ y }\dfrac { dy }{ dx } ={ e }^{ 2x }-{ e }^{ x }{ e }^{ y }$$
    $$\Rightarrow { e }^{ y }\dfrac { dy }{ dx } +{ e }^{ x }{ e }^{ y }={ e }^{ 2x }$$
    Put $${ e }^{ y }=t\Rightarrow { e }^{ y }\dfrac { dy }{ dx } =\dfrac { dt }{ dx }$$
    $$ \therefore \dfrac { dt }{ dx } +{ e }^{ x }t={ e }^{ 2x }$$
    On comparing with $$\dfrac { dt }{ dx } +Pt=Q$$, we get
    $$P={ e }^{ x }$$ and $$Q={ e }^{ 2x }$$
    $$\therefore IF={ e }^{ \int { Pdx }  }={ e }^{ \int { { e }^{ x }dx }  }={ e }^{ { e }^{ x } }$$
    Required solution is
    $$t\cdot { e }^{ { e }^{ x } }=\displaystyle\int { { e }^{ 2x }{ e }^{ { e }^{ x } }dx } +C$$
    $$\Rightarrow { e }^{ y }{ e }^{ { e }^{ x } }=\left( { e }^{ x }-1 \right) { e }^{ { e }^{ x } }+C$$
    $$\Rightarrow { e }^{ y }=\left( { e }^{ x }-1 \right) +C{ e }^{ -{ e }^{ x } }$$
  • Question 9
    1 / -0
    The solution of the differential equation $$\displaystyle (x^2-yx^2)\frac{dy}{dx}+y^2+xy^2=0$$ is?
    Solution
    The given differential equation is $$x^2(1-y)\displaystyle\frac{dy}{dx}+y^2(1+x)=0$$
    $$\Rightarrow x^2(1-y)dy+y^2(1+x)dx=0$$
    $$\Rightarrow \displaystyle\frac{1-y}{y^2}dy+\frac{1+x}{x^2}dx=0$$
    On integrating, we get
    $$-\displaystyle\frac{1}{y}-\log y-\frac{1}{x}+\log x=C$$
    $$\Rightarrow \log\left(\displaystyle\frac{x}{y}\right)=\dfrac{1}{x}+\dfrac{1}{y}+C$$. 
  • Question 10
    1 / -0
    The solution of $$\dfrac{dy}{dx} = 1+y+y^2+x+xy+xy^2$$ is
    Solution
    Given, $$\dfrac{dy}{dx} = 1+y+y^2+x+xy+xy^2$$
    $$\implies \dfrac{dy}{1+y+y^2} = (1+x)dx$$ 

    $$\displaystyle \int\dfrac{dy}{\left(y+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}=\int(1+x)dx$$

    $$\dfrac{1}{\sqrt{3}/2} \tan^{-1}\left(\dfrac{y+\dfrac{1}{2}}{\sqrt{3}/2}\right) = x+\dfrac{x^2}{2}+\dfrac{c}{2}$$ 

    $$4\tan^{-1}\left(\dfrac{2y+1}{\sqrt{3}}\right)=\sqrt{3}(2x+x^2)+C$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now