Self Studies

Differential Equations Test - 36

Result Self Studies

Differential Equations Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y = \sqrt{\dfrac{1-x}{1+x}}$$ then find $$(1 - x^2) \dfrac{dy}{dx} + y$$ =
    Solution
    $$y= \sqrt{ \dfrac{1-x}{1+x} }$$
    $$y^{2}= \dfrac{1-x}{1+x}$$
    $$y.y = \dfrac{ (1+x)(-1)-(1-x)(1) }{ (1+x)^{2} }$$
    $$y.y = \dfrac{-1-x-1+x}{(1+x)^{2}}$$
    $$yy = \dfrac{-2}{ (1+x)^{2} }$$
    $$y \dfrac{dy}{dx}= \dfrac{-2}{(1+x)^{2}}$$
    $$ \dfrac{dy}{dx}= \dfrac{-2}{y (1+x)^{2}}$$
    Given 
    $$(1-x^{2}) \left( \dfrac{dy}{dx} \right)+y$$
    $$= (1-x^{2}) \dfrac{-2}{ y (1+x)^{2}}+ y$$
    $$= \dfrac{-(1-x)}{(1+x)}+ y$$
    $$= \left(1- \dfrac{(1-x)}{(1+x)}. \dfrac{1}{y^{2}} \right)$$
    $$=y \left(1- \dfrac{(1-x)}{(1+x)} \times \dfrac{1+x}{1-x} \right)$$
    $$=0$$
  • Question 2
    1 / -0
    The solution of $$x \dfrac{dy}{dx} + y logy = xy e^x$$ is 
    Solution
    $$ x\dfrac{dy}{dx}+ylny = xye^{x} $$
    $$ \dfrac{x}{y}\dfrac{dy}{dx}+lny = xe^{x} $$
    Let $$ xlny = t $$
    $$ lny +\dfrac{x}{y}\dfrac{dy}{dx} = \dfrac{dt}{dx} $$
    $$ \dfrac{dt}{dx} = x.e^{x} $$
    $$\displaystyle \int dt = \int x-e^{x} $$
    $$\displaystyle t = xe^{x}-\int e^{x}dx $$
    $$ t = e^{x} (x-1)+c $$
    prove value of 1
    $$ xlny = e^{x}(x-1)+c $$ 

  • Question 3
    1 / -0
    The real value of n for which substitution $$y = {u^n}$$ will transform differential equation $$2{x^4}y\frac{{dy}}{{dx}} + {y^4} = 4{x^6}$$ into homogeneous equation
    Solution
    $$2{x^4}y\frac{{dy}}{{dx}} + {y^4} = 4{x^6}$$

    $$2y\frac{{dy}}{{dx}} + \frac{{{y^4}}}{{{x^4}}} = 4{x^2}$$

    $$y = {u^n}$$

    $$\frac{{dy}}{{dx}} = n{x^{n - 1}}$$

    $$2n{u^{n - 1}}{u^n}\frac{{du}}{{dx}} + \frac{{{u^{4x}}}}{{{x^4}}} = 4{x^2}$$

    $$2x - 1 = 2$$

    $$2x = 3$$

    $$x = \frac{3}{2}$$
  • Question 4
    1 / -0
    The solution of the differential equation $$x\dfrac{dy}{dx}=y+x\tan \dfrac{y}{x}$$ is :
    Solution
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{y}{x}+\tan\left(\dfrac{y}{x}\right)$$
    Let $$y=vx$$
    $$\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$$
    $$\therefore v+x\dfrac{dv}{dx}v+\tan(v)$$
    $$\Rightarrow \dfrac{dv}{\tan(v)}=\dfrac{dx}{x}$$
    $$\displaystyle \Rightarrow \int \cot(v)dv=\int\dfrac{1}{x}dx$$
    $$\Rightarrow ln|\sin(v)|=|n|x|+k=|n|x|+|nle^k|$$
    $$\Rightarrow ln|\sin(v)|+ln |e^kx|$$
    $$\Rightarrow \sin(v)=cx$$      $$\{e^k=c\}$$
    $$\Rightarrow \boxed{\sin\left(\dfrac{y}{x}\right)=cx}$$

  • Question 5
    1 / -0
    If $$y(x)$$ is the solution of the differential equation $$(x+2)\dfrac{dy}{dx}=x^{2}+4x-9, x \neq -2$$ and $$y(0)=0$$, then $$y(-4)$$ is equal to 
    Solution

    Consider the given equation.

    $$ \int{dy}=\int{\dfrac{\left( {{x}^{2}}+4x-9\, \right)}{(x+2)}}dx $$

    Integrate on both side w.r.t $$ dx & dy $$

      $$ \int{dy}=\int{\dfrac{\left( {{x}^{2}}+4x-9\, \right)}{(x+2)}}dx $$

     $$ \int{dy=\int{\dfrac{{{\left( x+2 \right)}^{2}}-13}{\left( x+2 \right)}}}dx $$

     $$ \int{dy}=\int{\left( x+2 \right)}dx+\int{\dfrac{13}{\left( x+2 \right)}}dx $$

     $$ y=\dfrac{{{x}^{2}}}{2}+2x+13\ln \left( x+2 \right)+C $$

    $$ y\left( 0 \right)=0\,\,\,\,\,\,\,\,y(-4) $$

     $$ 0=0+0+13\ln 2+C $$

     $$ C=-13\ln 2\,\,\,\,........\left( 3 \right) $$

     $$ y=\dfrac{{{x}^{2}}}{2}+2x+13\ln \left( x+2 \right)-13\ln 2\,\,\,\,\,..........\left( 4 \right) $$

     $$ y\left( -4 \right)=\dfrac{{{\left( -4 \right)}^{2}}}{2}+2\left( -4 \right)+13\ln \left( \left( -4 \right)+2 \right)-13\ln 2 $$

     $$ y\left( -4 \right)=0 $$ 

    hence, this is the correct answer.

  • Question 6
    1 / -0
    The solution of the differential equation $$ydx + (x+x^2y)dy = 0$$ is-
    Solution
    Given,
    $$ydx+(x+x^2y)dy=0$$

    divide above equation by $$x^2ydy$$

    $$\dfrac{1}{x^2}.\dfrac{dx}{dy}+\frac{1}{xy}=1=0$$$$~~~~~~~-(1)$$

    Let$$\dfrac{1}{x}=t$$


    $$\to -\dfrac{1}{x}\dfrac{dx}{dy}=\dfrac{dt}{dy}$$

    $$1\to -\dfrac{dt}{dy}+\dfrac{t}{y}+1=0$$
    or
    $$\dfrac{dt}{dy}-\dfrac{t}{y}=1$$
    p=$$-y^{-1}$$,q=1

    so I.F.=$$e^{\int p.dy}$$

             =$$e^{\int \dfrac{-1}{y}dy}$$

             =$$e^{-logy}$$

    =$$\dfrac{1}{y}$$
    So complete solution

    $$t.\dfrac{1}{y}=\int 1.\dfrac{1}{y}dy$$


    $$t.\dfrac{1}{y}=logy+c$$

    $$\to \dfrac{1}{xy}=logy+c$$

    $$\to -\dfrac{1}{xy}+logy=c$$

  • Question 7
    1 / -0
    Soluation of D.E. $$\dfrac{{dy}}{{dx}} = \dfrac{{3x + 4y + 3}}{{12x + 16y - 4}}$$ is 
    Solution
    $$\dfrac {dy}{dx}=\dfrac {3x+4y+3}{12x+16y-4}$$
    Let $$2=3x+4y\ \Rightarrow \dfrac {dz}{dx}=3+4\dfrac {dy}{dx}=\dfrac {1}{4}\left (\dfrac {dz}{dx} -3 \right)$$
    $$\therefore \ \dfrac {1}{4}\left (\dfrac {dz}{dx} -3 \right)=\dfrac {z+3}{4z-4}\Rightarrow \dfrac {dz}{dx}-3=\dfrac {4z+12}{4z-4}$$
    $$\Rightarrow \ \dfrac {dz}{dx}=\dfrac {4z+12}{4z -4}+3=\dfrac {16z}{4z-4}=\dfrac {4z}{z-1}$$
    $$\Rightarrow \ \dfrac {z-1}{z}dz=4dx$$
    $$\Rightarrow \ \displaystyle \int \dfrac {z-1}{z}dz =4\displaystyle \int dx$$
    $$\Rightarrow \ z-\ln |z|=4x+C$$
    $$\Rightarrow \ 3x+4y-\ln |3x+4y|=4x+C$$
    $$\Rightarrow \ \boxed {4y=x+\in |3x+4y|+C}$$
  • Question 8
    1 / -0
    The general solution of the differential equation $$\dfrac { dy }{ dx } + y\cot { x } = \csc { x }$$, is
    Solution
    $$\dfrac{dy}{dx}+y\cot x=cosec n$$
    $$I.F=e^{\displaystyle\int \omega t xdx}=e^{en(\sin n)}$$
    $$=\sin n$$
    $$y\cdot \sin x=\displaystyle\int cosec x. mn-dx+c$$
    $$y\sin n=x+c$$
    $$\neq y\sin x=x+c$$.

  • Question 9
    1 / -0
    The solution of $$\cfrac { dy }{ dx } =\left( \cfrac { ax+b }{ cy+d }  \right)  $$ represents a parabola if:- 
    Solution
    We hyave,
    $$\dfrac{dy}{dx}=\dfrac{ax+b}{cy+d}$$ 

    For above differential equation to represent equation of parabola, one variable must have highest degree $$2$$ and other must have degree $$1$$.

    When we take $$a=0$$ and $$c≠0$$, then we get 
    $$\dfrac{dy}{dx}=\dfrac{0+b}{cy+d}$$

    $$(cy+d)\ dy=b\ dx$$

    $$\int (cy+d)\ dy=\int b\ dx$$

    $$\dfrac{cy^2}{2}+dy=bx+C$$ which is equation of parabola.

    Hence, this is the answer.
  • Question 10
    1 / -0
    The integrating factor of the differential equation $$\cfrac { dy }{ dx } -y\tan { x } =\cos { x } $$ is,
    Solution
    We have,
    $$\cfrac { dy }{ dx } -y\tan { x } =\cos { x } $$

    We know that the general equation
    $$\dfrac{dy}{dx}+Py=Q$$

    So,
    $$P=\ -tan x,  Q=\cos x$$

    We know that
    $$I.F=e^{\int P\ dx}$$

    Therefore,
    $$I.F=e^{\int \tan x\ dx}$$

    $$I.F=e^{-\ln |\cos x|}$$

    $$I.F=e^{\ln \left (  \dfrac{1}{\sec x} \right )}$$

    $$I.F= \dfrac{1}{\sec x}$$

    $$I.F=\cos x$$

    Hence, this is the answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now