Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    If $$y = \sqrt{\dfrac{1-x}{1+x}}$$ then find $$(1 - x^2) \dfrac{dy}{dx} + y$$ =

  • Question 2
    1 / -0

    The solution of $$x \dfrac{dy}{dx} + y logy = xy e^x$$ is 

  • Question 3
    1 / -0

    The real value of n for which substitution $$y = {u^n}$$ will transform differential equation $$2{x^4}y\frac{{dy}}{{dx}} + {y^4} = 4{x^6}$$ into homogeneous equation

  • Question 4
    1 / -0

    The solution of the differential equation $$x\dfrac{dy}{dx}=y+x\tan \dfrac{y}{x}$$ is :

  • Question 5
    1 / -0

    If $$y(x)$$ is the solution of the differential equation $$(x+2)\dfrac{dy}{dx}=x^{2}+4x-9, x \neq -2$$ and $$y(0)=0$$, then $$y(-4)$$ is equal to 

  • Question 6
    1 / -0

    The solution of the differential equation $$ydx + (x+x^2y)dy = 0$$ is-

  • Question 7
    1 / -0

    Soluation of D.E. $$\dfrac{{dy}}{{dx}} = \dfrac{{3x + 4y + 3}}{{12x + 16y - 4}}$$ is 

  • Question 8
    1 / -0

    The general solution of the differential equation $$\dfrac { dy }{ dx } + y\cot { x } = \csc { x }$$, is

  • Question 9
    1 / -0

    The solution of $$\cfrac { dy }{ dx } =\left( \cfrac { ax+b }{ cy+d }  \right)  $$ represents a parabola if:- 

  • Question 10
    1 / -0

    The integrating factor of the differential equation $$\cfrac { dy }{ dx } -y\tan { x } =\cos { x } $$ is,

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now