Self Studies

Differential Equations Test - 37

Result Self Studies

Differential Equations Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of the differential equation $$x \, dx + y\, dy = x^2y\, dy - y^2\, x\, dx$$ is
    Solution
    $$x\, dx + y \, dy = x^2 y \, dy - y^2x \, dx$$
    $$y\, dy (x^2-1) = x\, dx (1+y^2)$$
    $$\displaystyle \int \dfrac{y}{1+y^2}dy - \int \dfrac{x}{x^2-1} dx$$
    $$\Rightarrow x^2-1 = C (1+y^2)$$
  • Question 2
    1 / -0
    Solve differential equation $$dx=\dfrac{xdv}{v^2-a^2}$$.
    Solution

  • Question 3
    1 / -0
    Solution for $$\dfrac{x + y \dfrac{dy}{dx}}{y - x \dfrac{dy}{dx}} = x^2 + 2y^2 + \dfrac{y^4}{x^2}$$ is 
    Solution

  • Question 4
    1 / -0
    The particular solution of the differential equation $$y(1+\log x)\dfrac{dx}{dy} -x =0$$ when $$x=e, y=e^2$$ is
    Solution



    Correct  equation is,
    $$y(1+logx)\dfrac{dx}{dy}-xlogx=0$$

    $$\to \dfrac{dy}{y}=\dfrac{1+logx}{logx}dx$$$$~~~~~-(1)$$

            Let  $$xlogx=t$$
                    $$ (1+logx)dx=dt$$
    $$(1) \to \dfrac{dy}{y}=\dfrac{dt}{t}$$
         integrating Both the sides
    $$ \to \int \dfrac{dy}{y}=\int \dfrac{dt}{t}$$
    $$logy=logt+c$$
    $$ at x=e and y=e^2$$
    $$ loge^2=eloge+c$$
    $$2-1=c$$
    c=1

    $$logy=logt+1$$
    $$logy=logt+loge$$
    $$logy=log(xlogx)+loge$$
    $$y=xelogx$$
  • Question 5
    1 / -0
    Solution of differential equation $$xdy-yx=0$$ represents:
    Solution
    $$xdy-ydx=0\Rightarrow \dfrac{dy}{y}=\dfrac{dx}{x}$$
    Integrating both sides
    $$\ln y=\ln x\Rightarrow y=x$$
    Solution of differential equation $$xdy-yx=0$$ reperesnts straight line passing through origin
  • Question 6
    1 / -0
    The solution of $$\dfrac{{dy}}{{dx}} = \dfrac{{x{{{\mathop{\rm log x}\nolimits} }^2} + x}}{{\sin y + y\cos y}}$$
    Solution
    $$\dfrac{dy}{dx}=\dfrac{2x\log{x}+x}{\sin{y}+y\cos{y}}$$
    $$\Rightarrow\,\left(\sin{y}+y\cos{y}\right)dy=\left(2x\log{x}+x\right)dx$$
    $$\Rightarrow\,\sin{y}dy+y\cos{y}dy=2x\log{x}dx+xdx$$
    Integrating both sides, we get
    $$\Rightarrow\,\displaystyle\int{\sin{y}dy}+\displaystyle\int{y\cos{y}dy}=2\displaystyle\int{x\log{x}dx}+\displaystyle\int{xdx}$$
    $$\Rightarrow\,-\cos{y}+\displaystyle\int{y\cos{y}dy}=2\displaystyle\int{x\log{x}dx}+\dfrac{{x}^{2}}{2}+c$$
    Consider $$\displaystyle\int{y\cos{y}dy}$$
    Let $$u=y\Rightarrow\,du=dy$$
    $$dv=\cos{y}dy\Rightarrow\,v=\sin{y}$$
    Consider $$\displaystyle\int{x\log{x}dx}$$
    Let $$u=\log{x}\Rightarrow\,du=\dfrac{1}{x}dx$$
    $$dv=xdx\Rightarrow\,v=\dfrac{{x}^{2}}{2}$$
    $$\Rightarrow\,-\cos{y}+y\sin{y}-\displaystyle\int{\sin{y}dy}=2\left[\dfrac{{x}^{2}\log{x}}{2}-\displaystyle\int{\dfrac{{x}^{2}}{2}\times \dfrac{1}{x}dx}\right]+\dfrac{{x}^{2}}{2}+c$$
    $$\Rightarrow\,-\cos{y}+y\sin{y}+\cos{y}={x}^{2}\log{x}-\displaystyle\int{xdx}+\dfrac{{x}^{2}}{2}+c$$
    $$\Rightarrow\,y\sin{y}={x}^{2}\log{x}+\dfrac{{x}^{2}}{2}-\dfrac{{x}^{2}}{2}+c$$
    $$\Rightarrow\,y\sin{y}={x}^{2}\log{x}+c$$
  • Question 7
    1 / -0
    The solution of $$\cos \, y \, \log (\sec \, x + \tan \, x) dx = \cos \, x \, \log (\sec \, y + \tan \, y) dy$$ is 
    Solution
    Given,
    $$cosylog(secx+tanx)dx=cosxlog(secy+tany)dy$$
    or
    $$\dfrac{log(secy+tany)dy}{cosy}=\dfrac{log(secx+tanx)dx}{cosx}$$

    Integrate Both the sides
    $$\int \dfrac{log(secy+tany)dy}{cosy}=\int \dfrac{log(secx+tanx)dx}{cosx}$$$$~~~~~~-(1)$$

    Let u=$$log(sey+tany)$$
    $$du=\dfrac{1}{cosy}dy$$

    and $$log(secx+tanx)=v$$
           $$\dfrac{1}{cosx}=dv$$

    $$(1)\to \int udu=\int vdv$$
    $$\to \dfrac{u^2}{2}=\dfrac{v^2}{2}+c$$
    $$u^2=v^2+2c$$
    $$[log(secy+tany)]^2-[log(secx+tanx)]^2=c$$
  • Question 8
    1 / -0
    The equation of the curve through $$\left(0, \dfrac{\pi}{4} \right)$$ satisfying the differential equation. $$e^x \, \tan \, y \, dx + (1 + e^x) \sec^2 \, ydy = 0$$ is given by 
    Solution
    $$e^x \tan y dx+(1+e^x)\sec ^2y dy=0$$

    $$(1+e^x)\sec ^2y dy=-e^x \tan y dx$$

    $$\dfrac{\sec ^2y}{\tan y}dy=\dfrac{-e^x}{1+e^x}dx$$

    substitute $$u=\tan y\rightarrow du=\sec ^2y dy $$  and  $$v=1+e^x\rightarrow dv =e^x dx$$

    $$\int \dfrac{1}{u}du=\int \dfrac{-1}{v}dv$$

    $$\ln u = -\ln v$$

    $$\ln (\tan y)= -\ln (1+e^x)$$

    $$\ln (\tan y)+\ln (1+e^x)=0$$

    $$\ln (1+e^x)\tan y =0$$

    $$(1+e^x)\tan y =1$$
  • Question 9
    1 / -0
    The solution to the differential equation $$\cos\ xdy=y(\sin x-y)dx$$, $$0<x<\dfrac{\pi}{2}$$, is
    Solution
    $$cosx\, dy=y(sinx-y)dx$$ ___(1)
    $$\dfrac{dy}{dx}=\dfrac{y(sinx-y)}{cos x}= ytanx-y^{2}secx$$
    $$\dfrac{dy}{dx}-ytanx=-y^{2}secx$$ ___(2)
    [Divide by $$y^2$$]
    $$y^{-2}\dfrac{dy}{dx}-y^{-1}tanx= -secx$$ ___ (3)
    Let $$+y^{-1}=z\Rightarrow -y^{-2}\dfrac{dy}{dx}=\dfrac{dz}{dx}$$
    $$-\dfrac{dz}{dx}-ztanx= -secx$$ ___ (4) $$=\dfrac{dz}{dx}+ztanx=secx$$
    $$I.F=e^{\displaystyle + \int tanx}= e^{+log\,secx}= secx$$
    $$\displaystyle z\times I.F= \int secx*I.F\, dx$$
    $$\displaystyle zsecx=\int sec^{2}x\, dx$$
    $$\displaystyle \frac{1}{y}secx= tan x+c$$
    $$secx=y(tan x+c)$$

  • Question 10
    1 / -0
    If $$\phi \left( x \right) =\phi \prime \left( x \right) $$ and $$\phi \left( 1 \right) =2$$, then $$\phi \left( 3 \right) $$ equals 
    Solution
    $$\phi(x)=\phi(x)$$ and $$\phi(1)=2$$
    Let $$y=\phi(x)$$
    $$y=\dfrac{dy}{dx}$$
    $$\displaystyle \int dx=\int \dfrac{dy}{y}$$
    $$x+c=ln \,y\Rightarrow y=e^{x+c}$$
    Given
    $$\phi(1)=2\Rightarrow 2=e^{1+c}$$
                     $$\Rightarrow ln^2=1+c\Rightarrow c=ln^2-1$$
    $$c=ln2-ln e$$  $$[\therefore ln_e\, e=1]$$
    $$c=ln(\dfrac{2}{e})$$
    $$\therefore y=e^{x+ln(\dfrac{2}{e})}$$
    $$\phi(3)=?\,\,\,\,\,\,\,\,\,y=e^{3+\ln(\dfrac{2}{e})}=e^3.e^{ln(\dfrac{2}{e})}$$
                                                  $$=e^3\times \dfrac{2}{e}$$          $$[\because a^{log\,a^b}=b]$$
    $$=\phi(3)=2e^2$$
    options $$B$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now