Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    The solution of the differential equation $$x \, dx + y\, dy = x^2y\, dy - y^2\, x\, dx$$ is

  • Question 2
    1 / -0

    Solve differential equation $$dx=\dfrac{xdv}{v^2-a^2}$$.

  • Question 3
    1 / -0

    Solution for $$\dfrac{x + y \dfrac{dy}{dx}}{y - x \dfrac{dy}{dx}} = x^2 + 2y^2 + \dfrac{y^4}{x^2}$$ is 

  • Question 4
    1 / -0

    The particular solution of the differential equation $$y(1+\log x)\dfrac{dx}{dy} -x =0$$ when $$x=e, y=e^2$$ is

  • Question 5
    1 / -0

    Solution of differential equation $$xdy-yx=0$$ represents:

  • Question 6
    1 / -0

    The solution of $$\dfrac{{dy}}{{dx}} = \dfrac{{x{{{\mathop{\rm log x}\nolimits} }^2} + x}}{{\sin y + y\cos y}}$$

  • Question 7
    1 / -0

    The solution of $$\cos \, y \, \log (\sec \, x + \tan \, x) dx = \cos \, x \, \log (\sec \, y + \tan \, y) dy$$ is 

  • Question 8
    1 / -0

    The equation of the curve through $$\left(0, \dfrac{\pi}{4} \right)$$ satisfying the differential equation. $$e^x \, \tan \, y \, dx + (1 + e^x) \sec^2 \, ydy = 0$$ is given by 

  • Question 9
    1 / -0

    The solution to the differential equation $$\cos\ xdy=y(\sin x-y)dx$$, $$0<x<\dfrac{\pi}{2}$$, is

  • Question 10
    1 / -0

    If $$\phi \left( x \right) =\phi \prime \left( x \right) $$ and $$\phi \left( 1 \right) =2$$, then $$\phi \left( 3 \right) $$ equals 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now