Self Studies

Differential Equations Test - 42

Result Self Studies

Differential Equations Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$xdx+ydy=\frac { xdy-ydx }{ { x }^{ 2 }+{ y }^{ 2 } } $$ is ________________________.
  • Question 2
    1 / -0
    The solution of the differential equation $$(x^2-yx^2)\dfrac{y^3}{x}=k+y^2+xy^2=0$$ is?
    Solution

  • Question 3
    1 / -0
    Let $$f\left( x \right) ={ cos }^{ -1 }\left( cosx \right)$$ then 
    Solution

  • Question 4
    1 / -0
    differential equation of all parabolas whose axis s y - axis.......
    Solution
    Parabola with axis on y- axis is given by, 
    $$ x^{2}= 4a(y-c), $$ Differentiating, $$\left \{ center = (0,c) \right \}$$
    $$ 2x = \frac{4 a dy}{dx} \Rightarrow  a = \frac{x}{2y'}$$
    $$ \Rightarrow x^{2} = 4(\frac{x}{2y'})y$$ $$ \Rightarrow x^{2}y' = 2xy$$
    $$ \Rightarrow  2x = 4ay' $$ $$ \Rightarrow a = \frac{x}{2y'} $$
    $$ \Rightarrow  x^{2} = \frac{4x}{2y'}(y-c)$$ $$\Rightarrow 2y'x^{2}= 2xy-2cx$$
    $$ \Rightarrow {y}''x^{2}+2xy'= 2xy'+2y-2c$$
    $$ \Rightarrow  c = \frac{2y-{y}''x^{2}}{2}$$
    $$ \Rightarrow x^{2} = \frac{2x}{y'}(y-y+{y}''\frac{x^{2}}{2})$$
    $$\Rightarrow  x^{2}y'= x({y}''x^{2})$$
    $$ \Rightarrow  x \frac{dy}{dx} -x^{2}\frac{d^{2}y}{dx^{2}} = 0 $$

  • Question 5
    1 / -0
    $$Let_y-y(x)$$ be the solution of the differential
    equation $$sinx\dfrac{dy}{dx} -ycosx -4x,_x\epsilon (0,\pi ). if y\left(\frac{\pi}{2}\right)$$ = 0,
    then y $$\left(\dfrac{\pi}{6}\right)$$ is equal to 
    Solution
    $$\Rightarrow \dfrac{dy}{dx}-\cot x\cdot y=\dfrac{4x}{\sin x}$$
    This is a linear D.E
    Integrating factor(I.F)$$=e^{\displaystyle\int -\cot xdx}=e^{-ln |\sin x|}$$
    $$\Rightarrow I.F=\dfrac{1}{\sin x}$$
    $$\Rightarrow \dfrac{y}{\sin x}=\displaystyle\int\dfrac{4x}{\sin^2x}dx=\displaystyle\int \underset{I}{4x}\underset{II}{cosec^2}xdx$$
    Applying integration by parts,
    $$\dfrac{y}{\sin x}=4\left[x(-\cot x)-\displaystyle\int (-\cot x)dx\right]$$
    $$=4\left[-x\cot x+ln \sin x\right]+c$$
    $$\Rightarrow y=-4x\sin x+4\sin x\cdot ln \sin x+c\sin x$$
    As $$y\left(\dfrac{\pi}{2}\right)=0$$
    $$\Rightarrow 0$$
    $$=-2\pi+0+c$$
    $$\Rightarrow c=2\pi |ln|=0$$
    $$\Rightarrow y=-4x\sin x+4\sin x\cdot ln \sin x+2\pi \sin x$$
    $$y\left(\dfrac{\pi}{6}\right)\Rightarrow y=\dfrac{-2\pi}{3}\left(\dfrac{1}{2}\right)+4\left(\dfrac{1}{2}\right)(-ln2)+\pi$$
    $$y=\dfrac{2\pi}{3}-2ln2$$.

  • Question 6
    1 / -0
    Integrating factors of the differential equation $$\frac{{dy}}{{dx}} + y = \frac{{1 + y}}{x}$$ is 
    Solution

  • Question 7
    1 / -0
    Solution of the differential equation $$\left( { x }^{ 2 }+1 \right) y'+2xy=4{ x }^{ 2 }$$ is 
    Solution

    We have,

    $$ \left( {{x}^{2}}+1 \right)y'+2xy=4{{x}^{2}} $$

    $$ \Rightarrow \left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}+2xy=4{{x}^{2}} $$

    $$ \Rightarrow \dfrac{dy}{dx}+\dfrac{2x}{\left( {{x}^{2}}+1 \right)}y=\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+1 \right)} $$

    On comparing that,

    $$\dfrac{dy}{dx}+Py=Q$$

    Now,

    $$P=\dfrac{2x}{{{x}^{2}}+1},\,\,\,\,\,Q=\dfrac{4{{x}^{2}}}{{{x}^{2}}+1}$$

    I.F.$$={{e}^{\int{pdx}}}$$

    $$ ={{e}^{\int{\dfrac{2x}{1+{{x}^{2}}}dx}}} $$

    $$ ={{e}^{\log \left( {{x}^{2}}+1 \right)}}\,\,\,\,\,\,\therefore {{e}^{\log x}}=x $$

    $$ =\left( {{x}^{2}}+1 \right) $$

    Now,

    $$ y\times I.F.=\int{Q.IFdx+C} $$

    $$ y\times \left( {{x}^{2}}+1 \right)=\int{\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+1 \right)}\times }\left( {{x}^{2}}+1 \right)dx+C $$

    $$ y\left( {{x}^{2}}+1 \right)=\int{4{{x}^{2}}}dx+C $$

    $$ y\left( {{x}^{2}}+1 \right)=4\int{{{x}^{2}}}dx+C $$

    $$ y\left( {{x}^{2}}+1 \right)=4\dfrac{{{x}^{3}}}{3}+C $$

    $$ y\left( {{x}^{2}}+1 \right)=\dfrac{4{{x}^{3}}}{3}+C $$

    Hence, this is the answer.
  • Question 8
    1 / -0
    Consider the differential equation, $$ydx-(x+y^{2})dy=0$$. If for $$y=1$$, x takes value $$1$$, then value of $$x$$ when $$y=4$$ is:

    Solution

  • Question 9
    1 / -0
    The differential equation found by the elimination of the arbitrary constant K from the equation $$y=(x+K)e^{-x}$$ is
    Solution

  • Question 10
    1 / -0
    The solution of the differentiable equation $$x^{2}\dfrac {dy}{dx}.\cos \dfrac {1}{x}-y\sin \dfrac {1}{x}=-1$$, where $$y\rightarrow -1$$ as $$x\rightarrow \infty$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now