Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    The solution of $$xdx+ydy=\frac { xdy-ydx }{ { x }^{ 2 }+{ y }^{ 2 } } $$ is ________________________.

  • Question 2
    1 / -0

    The solution of the differential equation $$(x^2-yx^2)\dfrac{y^3}{x}=k+y^2+xy^2=0$$ is?

  • Question 3
    1 / -0

    Let $$f\left( x \right) ={ cos }^{ -1 }\left( cosx \right)$$ then 

  • Question 4
    1 / -0

    differential equation of all parabolas whose axis s y - axis.......

  • Question 5
    1 / -0

    $$Let_y-y(x)$$ be the solution of the differential
    equation $$sinx\dfrac{dy}{dx} -ycosx -4x,_x\epsilon (0,\pi ). if y\left(\frac{\pi}{2}\right)$$ = 0,
    then y $$\left(\dfrac{\pi}{6}\right)$$ is equal to 

  • Question 6
    1 / -0

    Integrating factors of the differential equation $$\frac{{dy}}{{dx}} + y = \frac{{1 + y}}{x}$$ is 

  • Question 7
    1 / -0

    Solution of the differential equation $$\left( { x }^{ 2 }+1 \right) y'+2xy=4{ x }^{ 2 }$$ is 

  • Question 8
    1 / -0

    Consider the differential equation, $$ydx-(x+y^{2})dy=0$$. If for $$y=1$$, x takes value $$1$$, then value of $$x$$ when $$y=4$$ is:

  • Question 9
    1 / -0

    The differential equation found by the elimination of the arbitrary constant K from the equation $$y=(x+K)e^{-x}$$ is

  • Question 10
    1 / -0

    The solution of the differentiable equation $$x^{2}\dfrac {dy}{dx}.\cos \dfrac {1}{x}-y\sin \dfrac {1}{x}=-1$$, where $$y\rightarrow -1$$ as $$x\rightarrow \infty$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now