Self Studies

Differential Equations Test - 43

Result Self Studies

Differential Equations Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solution of differential equation $$\left( { 2y+xy }^{ 3 } \right) dx+\left( x{ +x }^{ 2 }{ y }^{ 2 } \right) dy=0$$
    Solution

  • Question 2
    1 / -0
    The differential equation of all circles in the first quadrant which touch the coordinate axes is of order -
    Solution
    Centre of circle $$=a,a$$
    Radius of circle $$=a$$
    $$\therefore$$ Equation of circle -
    $$\Rightarrow \left( x-a\right)^2+\left( y-a\right)^2=a^2$$
    No. of arbitrary constants $$=1$$   ( i.e, a )
    $$\therefore$$ Order of differential equations $$=1$$
    Hence, the answer is $$1.$$

  • Question 3
    1 / -0
    The population  $$p(t)$$  at time  $$t$$  of a certain mouse species satisfies the differential equation  $$\dfrac { d p ( t )  } { d t } = 0.5 p ( t ) - 450.$$  If  $$p ( 0 ) = 850 ,$$  then the time at which the population becomes zero is
    Solution
    We have,
    $$\begin{array}{l} \dfrac { { d\left( { p\left( t \right)  } \right)  } }{ { dt } } =\dfrac { 1 }{ 2 } p\left( t \right) -450 \\ \dfrac { { d\left( { p\left( t \right)  } \right)  } }{ { dt } } =\dfrac { { p\left( t \right) -900 } }{ 2 }  \\ 2\int { \dfrac { { d\left( { p\left( t \right)  } \right)  } }{ { p\left( t \right) -900 } }  } =\int { dt }  \\ 2\, In\left| { \, p\left( t \right) -900 } \right| =t+c \\ t=0 \\ \Rightarrow 2\, In\, 50=0+c \\ \therefore \, 2\, In\, 900=t+2\, In\, 50 \\ t=2\, \, \left( { In\, 900-\, In\, 50 } \right)  \\ =2\, In\, \left( { \dfrac { { 900 } }{ { 50 } }  } \right)  \\ =2\, In\, 18 \end{array}$$

    Hence, option $$C$$ is correct answer.
  • Question 4
    1 / -0
    General solution of the differential equation $$\frac{{dy}}{{dx}} = 1 + xy$$ is
    Solution
    $$\frac{dy}{dx}= 1+xy \Rightarrow \frac{dy}{dx}-ky=1$$
    $$IF = e^{\int -xdx}= e^{-\frac{x^{2}}{2}}$$
    $$\frac{dy}{dx}=1+xy\Rightarrow e^{-\frac{x^{2}}{2}}\frac{dy}{dx}-2yxe^{-\frac{x^{2}}{2}}=1.e^{-\frac{x^{2}}{2}}$$
    $$\therefore \frac{d}{dx}(ye^{-\frac{x^{2}}{2}})=e^{-\frac{x^{2}}{2}}$$
    $$ye^{-\frac{x^{2}}{2}}=e^{-\frac{x^{2}}{2}}+c$$

  • Question 5
    1 / -0
    The solution of the differential equation,
      $$\dfrac{dy}{dx}=(x-y)^2$$, when $$y(1)=1$$, is :
    Solution
    $$x-y =t \Rightarrow \dfrac{dy}{dx}=1-\dfrac{dt}{dx}$$
    $$\Rightarrow 1- \dfrac{dt}{dx} \Rightarrow \int \dfrac{dt}{1-t^2} = \int 1dx$$
    $$\Rightarrow\dfrac{1}{2}ln \left(\dfrac{1+t}{1-t}\right)=x+\lambda$$
    $$\Rightarrow \dfrac{1}{2}ln \left(\dfrac{1+x-y}{1-x+y}\right)=x+\lambda$$     

    given $$y(1)=1$$

    $$\Rightarrow \dfrac{1}{2}ln (1)=1+ \lambda \Rightarrow \lambda = -1$$
    $$\Rightarrow  ln \left(\dfrac{1+x-y}{1-x+y}\right)=2(x-1)$$
    $$\therefore -log_e \left| \dfrac{1-x+y}{1+x-y}\right|=2(x-1)$$
  • Question 6
    1 / -0
    The solution of the differential equation $$\dfrac { dy }{ dx } =\dfrac { xy }{ { x }^{ 2 }+y^{ 2 } } $$ is -
    Solution

  • Question 7
    1 / -0
    The solution of differential equation  $$\cos ^ { 2 } x \dfrac { d y } { d x } - ( \tan 2 x ) y = \cos ^ { 4 } x , | x | < \dfrac { \pi } { 4 } ,$$  where $$y \left( \dfrac { \pi } { 6 } \right) = \dfrac { 3 \sqrt { 3 } } { 8 }$$
    Solution
    Given that:- 
    $$\cos ^ { 2 } x \dfrac { d y } { d x } - ( \tan 2 x ) y = \cos ^ { 4 } x , | x | < \dfrac { \pi } { 4 } ,$$  where $$y \left( \dfrac { \pi } { 6 } \right) = \dfrac { 3 \sqrt { 3 } } { 8 }$$

    To find:- Solution of the given equation.

    Solution:- $$\because \cos^2x(\dfrac{dy}{dx})-(\tan 2x)y=\cos^4x$$

    $$\Rightarrow \cos^2 x(\dfrac{dy}{dx})-\tan 2 xy =\cos^4x$$

    $$\Rightarrow \dfrac{dy}{dx}-\dfrac{\tan 2 x}{\cos^2x}.y=\cos^4x$$

    Now, we will compat the eqn i to

    $$\dfrac{dy}{dx}+Py=B$$

    $$\therefore P=f(x)$$

    $$B=f(x)$$

    So, Integration factor (I.F) $$=e^{\int Pdx}$$

    Here we will find the value of $$-\dfrac{\tan 2x}{\cos^2x}$$

    $$\displaystyle -\int \dfrac{\tan 2x}{\cos^2x}dx$$

    $$\displaystyle =-\int \dfrac{2\sin 2x}{\cos 2x(2\cos^2x)}dx$$

    $$\displaystyle =-\int \dfrac{2\sin 2x\,dx}{\cos 2x(1+\cos 2x)}$$

    Let, $$t=\cos 2x$$

    $$\Rightarrow dt=-2\sin x\,d\,x$$

    $$\displaystyle \Rightarrow =\int \dfrac{dt}{t(1+t)}$$

    $$\displaystyle =\int \dfrac{1}{t}-\dfrac{1}{1+t}dt$$

    $$=ln\left|\dfrac{t}{1+t}\right|$$

    $$=ln \left|\dfrac{\cos 2x}{1+\cos 2x}\right|$$

    Now, putting $$ln\left|\dfrac{\cos 2x}{1+\cos 2x}\right|$$ in I.F

    $$\therefore e^{Pdx}$$

    $$=e^{ln}\left|\dfrac{\cos 2x}{1+\cos 2x}\right|$$

    $$=\dfrac{\cos 2x}{1+\cos 2x}$$

    $$=\dfrac{\cos 2x}{2\cos^2x}$$

    Since, multiplying eqn i by I.F both side, we get.

    $$\dfrac{\cos 2x}{2\cos^2x}.\dfrac{dy}{dx}-\dfrac{\sin 2x}{\cos 4 x}y=\dfrac{\cos 2x}{2}$$

    $$\dfrac{\cos 2x}{2\cos^2x}.dy-(\dfrac{\sin 2x}{\cos 4 x})dx.y=\dfrac{\cos 2x}{2}dx$$

    $$\displaystyle \Rightarrow \int d(y\dfrac{\cos 2x}{2\cos^2x})=\int \dfrac{\cos 2x}{2}dx$$

    $$\Rightarrow y.\dfrac{\cos 2x}{2\cos^2x}=\dfrac{\sin 2x}{4}+C$$...........(II)

    $$\Rightarrow \dfrac{3\sqrt{3}}{8}(\dfrac{1/2}{2.\dfrac{3}{4}})=\dfrac{\sqrt{3}}{8}+c$$

    $$\Rightarrow x=\dfrac{\pi}{6}\,\,y=\dfrac{3\sqrt{3}}{8}$$

    $$\Rightarrow \dfrac{\sqrt{3}}{8}=\dfrac{\sqrt{3}}{8}+c$$

    $$\therefore c=0$$

    putting the value of c in eq ii.

    $$\therefore y.\dfrac{\cos 2x}{2\cos^2x}=\dfrac{\sin 2x}{4}+0$$

    $$\Rightarrow y=\dfrac{\sin 2x.2\cos^2x}{\cos 2x.4}$$

    $$\therefore y=\dfrac{\tan 2x.\cos^2x}{2}$$

    $$\therefore 2y=\tan 2x.\cos^2x$$

    hence, the required solution is

    $$2y=\tan 2x.\cos^2x$$
  • Question 8
    1 / -0
    A differential equation associated with the primitive $$y=a+b\ e^{5x}+c\ e^{7x}$$ is
    Solution

  • Question 9
    1 / -0
    If $$\sqrt { \dfrac { \upsilon  }{ \mu  }  } +\sqrt { \dfrac { \mu  }{ \upsilon  }  } =6$$, then $$\dfrac { d\upsilon  }{ d\mu  } =$$
    Solution
    $$\sqrt{\dfrac{v}{\mu}}+\sqrt{\dfrac{\mu}{v}}=6$$
    $$\Rightarrow \dfrac{v+\mu}{\sqrt{v\mu}}=6$$
    $$\Rightarrow {\left(v+\mu\right)}^{2}=36v\mu$$
    $$\Rightarrow {v}^{2}+{\mu}^{2}+2v\mu-36v\mu=0$$
    $$\Rightarrow {v}^{2}+{\mu}^{2}-34v\mu=0$$
    $$\Rightarrow 2v\dfrac{dv}{d\mu}+2\mu-34\left(v+\mu\dfrac{dv}{d\mu}\right)=0$$
    $$\Rightarrow \left(2v-34\mu\right)\dfrac{dv}{d\mu}=34v-2\mu$$
    $$\Rightarrow -2\left(17\mu-v\right)\dfrac{dv}{d\mu}=-2\left(\mu-17v\right)$$
    $$\therefore \dfrac{dv}{d\mu}=\dfrac{\mu-17v}{17\mu-v}$$
  • Question 10
    1 / -0
    The number of arbitrary constant in the particular solution of a differential equation is
    Solution
    According to the definition of particular solution of a differential equation, it does not contain any arbitrary constants.
    So number of arbitrary constants in a particular solution of a differential equation is $$0$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now