Given that:- $$\cos ^ { 2 } x \dfrac { d y } { d x } - ( \tan 2 x ) y = \cos ^ { 4 } x , | x | < \dfrac { \pi } { 4 } ,$$ where $$y \left( \dfrac { \pi } { 6 } \right) = \dfrac { 3 \sqrt { 3 } } { 8 }$$
To find:- Solution of the given equation.
Solution:- $$\because \cos^2x(\dfrac{dy}{dx})-(\tan 2x)y=\cos^4x$$
$$\Rightarrow \cos^2 x(\dfrac{dy}{dx})-\tan 2 xy =\cos^4x$$
$$\Rightarrow \dfrac{dy}{dx}-\dfrac{\tan 2 x}{\cos^2x}.y=\cos^4x$$
Now, we will compat the eqn i to
$$\dfrac{dy}{dx}+Py=B$$
$$\therefore P=f(x)$$
$$B=f(x)$$
So, Integration factor (I.F) $$=e^{\int Pdx}$$
Here we will find the value of $$-\dfrac{\tan 2x}{\cos^2x}$$
$$\displaystyle -\int \dfrac{\tan 2x}{\cos^2x}dx$$
$$\displaystyle =-\int \dfrac{2\sin 2x}{\cos 2x(2\cos^2x)}dx$$
$$\displaystyle =-\int \dfrac{2\sin 2x\,dx}{\cos 2x(1+\cos 2x)}$$
Let, $$t=\cos 2x$$
$$\Rightarrow dt=-2\sin x\,d\,x$$
$$\displaystyle \Rightarrow =\int \dfrac{dt}{t(1+t)}$$
$$\displaystyle =\int \dfrac{1}{t}-\dfrac{1}{1+t}dt$$
$$=ln\left|\dfrac{t}{1+t}\right|$$
$$=ln \left|\dfrac{\cos 2x}{1+\cos 2x}\right|$$
Now, putting $$ln\left|\dfrac{\cos 2x}{1+\cos 2x}\right|$$ in I.F
$$\therefore e^{Pdx}$$
$$=e^{ln}\left|\dfrac{\cos 2x}{1+\cos 2x}\right|$$
$$=\dfrac{\cos 2x}{1+\cos 2x}$$
$$=\dfrac{\cos 2x}{2\cos^2x}$$
Since, multiplying eqn i by I.F both side, we get.
$$\dfrac{\cos 2x}{2\cos^2x}.\dfrac{dy}{dx}-\dfrac{\sin 2x}{\cos 4 x}y=\dfrac{\cos 2x}{2}$$
$$\dfrac{\cos 2x}{2\cos^2x}.dy-(\dfrac{\sin 2x}{\cos 4 x})dx.y=\dfrac{\cos 2x}{2}dx$$
$$\displaystyle \Rightarrow \int d(y\dfrac{\cos 2x}{2\cos^2x})=\int \dfrac{\cos 2x}{2}dx$$
$$\Rightarrow y.\dfrac{\cos 2x}{2\cos^2x}=\dfrac{\sin 2x}{4}+C$$...........(II)
$$\Rightarrow \dfrac{3\sqrt{3}}{8}(\dfrac{1/2}{2.\dfrac{3}{4}})=\dfrac{\sqrt{3}}{8}+c$$
$$\Rightarrow x=\dfrac{\pi}{6}\,\,y=\dfrac{3\sqrt{3}}{8}$$
$$\Rightarrow \dfrac{\sqrt{3}}{8}=\dfrac{\sqrt{3}}{8}+c$$
$$\therefore c=0$$
putting the value of c in eq ii.
$$\therefore y.\dfrac{\cos 2x}{2\cos^2x}=\dfrac{\sin 2x}{4}+0$$
$$\Rightarrow y=\dfrac{\sin 2x.2\cos^2x}{\cos 2x.4}$$
$$\therefore y=\dfrac{\tan 2x.\cos^2x}{2}$$
$$\therefore 2y=\tan 2x.\cos^2x$$
hence, the required solution is
$$2y=\tan 2x.\cos^2x$$