Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    Solution of differential equation $$\left( { 2y+xy }^{ 3 } \right) dx+\left( x{ +x }^{ 2 }{ y }^{ 2 } \right) dy=0$$

  • Question 2
    1 / -0

    The differential equation of all circles in the first quadrant which touch the coordinate axes is of order -

  • Question 3
    1 / -0

    The population  $$p(t)$$  at time  $$t$$  of a certain mouse species satisfies the differential equation  $$\dfrac { d p ( t )  } { d t } = 0.5 p ( t ) - 450.$$  If  $$p ( 0 ) = 850 ,$$  then the time at which the population becomes zero is

  • Question 4
    1 / -0

    General solution of the differential equation $$\frac{{dy}}{{dx}} = 1 + xy$$ is

  • Question 5
    1 / -0

    The solution of the differential equation,
      $$\dfrac{dy}{dx}=(x-y)^2$$, when $$y(1)=1$$, is :

  • Question 6
    1 / -0

    The solution of the differential equation $$\dfrac { dy }{ dx } =\dfrac { xy }{ { x }^{ 2 }+y^{ 2 } } $$ is -

  • Question 7
    1 / -0

    The solution of differential equation  $$\cos ^ { 2 } x \dfrac { d y } { d x } - ( \tan 2 x ) y = \cos ^ { 4 } x , | x | < \dfrac { \pi } { 4 } ,$$  where $$y \left( \dfrac { \pi } { 6 } \right) = \dfrac { 3 \sqrt { 3 } } { 8 }$$

  • Question 8
    1 / -0

    A differential equation associated with the primitive $$y=a+b\ e^{5x}+c\ e^{7x}$$ is

  • Question 9
    1 / -0

    If $$\sqrt { \dfrac { \upsilon  }{ \mu  }  } +\sqrt { \dfrac { \mu  }{ \upsilon  }  } =6$$, then $$\dfrac { d\upsilon  }{ d\mu  } =$$

  • Question 10
    1 / -0

    The number of arbitrary constant in the particular solution of a differential equation is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now