Self Studies

Differential Equations Test - 48

Result Self Studies

Differential Equations Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf $$f (x)$$ and $$g (x)$$ are two solutions of the differential equation $$a\displaystyle \frac{\mathrm{d}^{2}\mathrm{y}}{\mathrm{d}\mathrm{x}^{2}}+\mathrm{x}^{2}\displaystyle \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}+\mathrm{y}=\mathrm{e}^{\displaystyle \mathrm{x}}$$, then $$f (x) - g (x)$$ is the solution of
    Solution
    Given, Differential equation as $$a\dfrac{\mathrm{d^2} y}{\mathrm{d} x^2}+x^2\dfrac{\mathrm{d} y}{\mathrm{d} x}+y=e^x$$ has $$f(x),g(x)$$ as two solutions.

    On substituting $$f(x)$$ in the given Differential equation,

    $$\Rightarrow af''(x)+x^2f'(x)+f(x)=e^x       ................ A$$

    On substituting $$g(x)$$ in the given differential equation,

    $$\Rightarrow ag''(x)+x^2g'(x)+g(x)=e^x    ................B$$

    Subtracting B from A,

    $$\Rightarrow a\times (f''(x)-g''(x))+x^2\times(f'(x)-g'(x))+(f(x)-g(x))=0$$

    It is in the form of $$a\dfrac{\mathrm{d^2} y}{\mathrm{d} x^2}+x^2\dfrac{\mathrm{d} y}{\mathrm{d} x}+y=0$$, which have a solution of $$y=f(x)-g(x)$$
  • Question 2
    1 / -0
    Solution of $$\dfrac{d^{2}y}{dx^{2}}$$= $$\log x$$ is:
    Solution
    $$\dfrac{d^{2}y}{dx^{2}}=\log x$$

    $$\Rightarrow \dfrac{d}{dx}y_{1}=\log x$$

    $$\Rightarrow \int dy_{1}=\int \log x dx+c_{1}$$

    $$\int \log dx=x\log x-x+{ c }_{ 1 }$$

    $$\Rightarrow y_{1}=x\log x-x+c_{1}$$

    $$\int dy = \int (x \log x-x+c_{1})dx+c_{2}$$

    $$y=\int x\log xdx-\dfrac{x^{2}}{2}+c_{1}x+c_{2}$$

    $$\int x\log xdx=x(x\log x-x)-\int(x\log x-x)dx$$

    $$\rightarrow 2\int x\log xdx=x^{2}\log x-x^{2}+x^{2}/_2=x^{2}\log x^-x^{2}/_2$$

    $$\Rightarrow \int x\log xdx=\dfrac{x^{2}\log x}{2}-x^{2}/_4$$

    $$\Rightarrow y=\dfrac{x^{2}\log x}{2}-\dfrac {3x^{2}}{4}+c_{1}x+c_{2}$$
  • Question 3
    1 / -0

    lf the solution of the differential equation
    $$\displaystyle \frac{1}{\sin^{-1}x}(\frac{dy}{dx})=1$$ is $$y=x \sin^{-1}x+f(x)+c$$ then f (x) is
    Solution

  • Question 4
    1 / -0
    The solution of $$\displaystyle \frac{dy}{dx}+\frac{x(1+y^{3})}{y^{2}(1+x^{2})}=0$$ is:
    Solution
    $$\dfrac{dy}{dx}+\dfrac{x\left ( 1+y^{3} \right )}{y^{2}\left ( 1+x^{2} \right )}=0$$
    $$\Rightarrow \dfrac{1}{3}\left ( \dfrac{3y^{2}}{1+y^{3}}dy \right )+\dfrac{1}{2}\left ( \dfrac{2x}{1+x^{2}}dx \right )=0$$
    put$$1+x^{2}=t;$$
    $$1+y^{3}=k$$
    $$\Rightarrow 2xdx=dt$$
    $$\Rightarrow 3y^{2}dy=dk$$
    $$\displaystyle\Rightarrow \dfrac{1}{3}\int \dfrac{dk}{k}+\dfrac{1}{2}\int \dfrac{dt}{t}=c$$
    $$\Rightarrow \log k^{\frac{1}{3}}t^{\frac{1}{2}}=c$$
    $$\Rightarrow \log k^{2}+3=log c$$
    $$\left ( 1+y^{3} \right )^{2}\left ( 1+x^{2} \right )^{3}=c$$
  • Question 5
    1 / -0
    The solution of $$(1-x^{2})\displaystyle \frac{dy}{dx}+xy=xy^{2}$$ is:
    Solution
    $$\dfrac{dy}{dx}+\dfrac{xy}{1-x^{2}}=\dfrac{xy^{2}}{1-x^{2}}$$

    $$\dfrac{dy}{dx}=\dfrac{xy(y-1)}{1-x^{2}}$$

    $$\Rightarrow \dfrac{dy}{y(y-1)}=\dfrac{x}{1-x^{2}}dx$$

    $$\Rightarrow\displaystyle \int \left(\frac{1}{y-1}-\dfrac{1}{y}\right)dy=-\dfrac{1}{2}\int \dfrac{-2x}{1-x^{2}}dx+c_{1}$$

    $$\Rightarrow \log\left(\dfrac{y-1}{y}\right)=-\dfrac{1}{2}\log(1-x^{2})+\log{c_{1}}$$

    $$\Rightarrow \dfrac{y-1}{y}=\dfrac{c_{1}}{\sqrt{1-x^{2}}}$$

    $$\Rightarrow y\sqrt{1-x^{2}}-\sqrt{1-x^{2}}=c_{1}y$$

    $$\Rightarrow y(\sqrt{1-x^{2}}-c_{1})=\sqrt{1-x^{2}}$$

    Put $$c_{1}=-c$$

    $$\Rightarrow y(c+\sqrt{1-x^{2}})=\sqrt{1-x^{2}}$$
  • Question 6
    1 / -0
    Solution of $$\>y-x\displaystyle \frac{dy}{dx}=5\left(y^{2}+\frac{dy}{dx}\right)$$, is:
    Solution
    $$5y^{2} - y = -\dfrac{dy}{dx} (5+x)$$

    $$\Rightarrow -\dfrac{dx}{5+x} = \dfrac{dy}{y(5y-1)}$$

    $$\Rightarrow -\dfrac{dx}{5+x} = \dfrac{5y - (5y-1)}{y(5y-1)}dy$$

    Integrating both sides, we get
    $$\Rightarrow\displaystyle\int\dfrac{dx}{5+x} = \int\left(\dfrac{5}{1-5y} + \frac{1}{y}\right)dy$$

    $$\Rightarrow  \log(5+x) = -\log(1-5y)+\log y + \log c; (\log c$$ is a constant$$)$$

    $$\Rightarrow  yc = (5+x)(1-5y)$$
  • Question 7
    1 / -0
    If $$ \dfrac{dy}{dx}=xy+2x+3y+6$$, then find the value of $$y(-1)-e^2y(-3)$$.
    Solution
    $$\dfrac{dy}{dx}=(x+3)(y+2)$$, If $$X=x+3,  Y=y+2$$

    $$\dfrac{dY}{Y}=XdX $$
    $$ \Rightarrow Y=A. e^{X^2/2}, y=-2 +Ae^{(x+3)^2/2}$$
    $$y(-1)=-2+Ae^2,  y(-3)=-2+A$$
    $$y(-1)-e^2  y(-3)=-2 +2e^2 =2(e^2-1)$$
  • Question 8
    1 / -0
    A normal is drawn at a point P(x, y) of a curve. It meets the x-axis at Q. If PQ is of constant length k, then show that the differential equation describing such curves Is, $$\displaystyle y\frac{dy}{dx}=\pm \sqrt{k^{2}-y^{2}}$$. Find the equation of such a curve passing through (0.k), the curve is a: 
    Solution
    Equation of normal at point $$P(x,y)$$ to the curve is
    $$\displaystyle Y-y=-\frac { dx }{ dy } \left( X-x \right) $$
    This straight line meets the x-axis in $$O(X,0)$$ where the number $$X$$ satisfies. 
    $$\displaystyle 0-y=-\frac { dx }{ dy } \left( X-x \right) \Rightarrow X=x+y\frac { dy }{ dx } $$
    Thus $$\displaystyle { PO }^{ 2 }={ \left( X-x \right)  }^{ 2 }+{ \left( 0-y \right)  }^{ 2 }\Rightarrow { \left( y\frac { dy }{ dx }  \right)  }^{ 2 }$$
    $$\displaystyle \Rightarrow y\frac { dy }{ dx } =\pm \sqrt { { k }^{ 2 }-{ y }^{ 2 } } ={ k }^{ 2 }-{ y }^{ 2 }$$
    To find the equation we rewrite it as $$\displaystyle \frac { ydy }{ \sqrt { { k }^{ 2 }-{ y }^{ 2 } }  } =\pm dx$$
    Integrating we get
    $$\displaystyle \int { \frac { ydy }{ \sqrt { { k }^{ 2 }-{ y }^{ 2 } }  }  } =\pm \int { dx } $$
    $$\Rightarrow -\sqrt { { k }^{ 2 }-{ y }^{ 2 } } =\pm x+c$$   ...(1)
    As the curve passes through $$(0,k)$$ we get
    $$-\sqrt { { k }^{ 2 }-k^{ 2 } } =\pm \left( o \right) +c\Rightarrow c=o$$
    Therefore equations (1) can be witten as $$-\sqrt { { k }^{ 2 }-{ y }^{ 2 } } =\pm x.$$
    $$\Rightarrow { k }^{ 2 }-{ y }^{ 2 }={ x }^{ 2 }\Rightarrow { x }^{ 2 }+{ y }^{ 2 }={ k }^{ 2 }$$
  • Question 9
    1 / -0
    The solution of differential equation $$(e^x + 1) y dy = (y + 1) e^x dx$$ is :
    Solution
    The given differential equation is $$(e^x + 1) y dy = (y + 1) e^x dx$$
    $$\Rightarrow \displaystyle \frac{ydy}{(y+1)}=\displaystyle \frac{e^{x}}{(e^{x}+1)}dx;$$ Integrating both sides
    $$\Rightarrow y- log |y + 1| = log (e^x + 1) + log k$$
    $$\Rightarrow y = log |(y + 1)(e^x + 1)| + log k$$
    $$\Rightarrow (y + 1)(e^x + 1) = ce^y$$
  • Question 10
    1 / -0
    The solution of differential equation  $$(e^x + 1)y dy = (y + 1) e^x  dx$$ is:
    Solution
    The given differential equation is $$(e^x + 1) y . dy = (y + 1) . e^x . dx$$
    $$\Rightarrow \displaystyle \frac{y.dy}{(y+1)}=\displaystyle \frac{e^{x}}{(e^{x}+1)}.dx$$
    $$\Rightarrow \int\left ( 1-\displaystyle \frac{1}{y+1} \right ).dy=\int \displaystyle \frac{e^{x}}{e^{x}+1}.dx$$
    $$\Rightarrow y - log |y +1| = log (e^x + 1) + log k$$
    $$\Rightarrow (y+1) (e^x+1)=e^y.c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now