Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    lf $$f (x)$$ and $$g (x)$$ are two solutions of the differential equation $$a\displaystyle \frac{\mathrm{d}^{2}\mathrm{y}}{\mathrm{d}\mathrm{x}^{2}}+\mathrm{x}^{2}\displaystyle \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}+\mathrm{y}=\mathrm{e}^{\displaystyle \mathrm{x}}$$, then $$f (x) - g (x)$$ is the solution of

  • Question 2
    1 / -0

    Solution of $$\dfrac{d^{2}y}{dx^{2}}$$= $$\log x$$ is:

  • Question 3
    1 / -0


    lf the solution of the differential equation
    $$\displaystyle \frac{1}{\sin^{-1}x}(\frac{dy}{dx})=1$$ is $$y=x \sin^{-1}x+f(x)+c$$ then f (x) is

  • Question 4
    1 / -0

    The solution of $$\displaystyle \frac{dy}{dx}+\frac{x(1+y^{3})}{y^{2}(1+x^{2})}=0$$ is:

  • Question 5
    1 / -0

    The solution of $$(1-x^{2})\displaystyle \frac{dy}{dx}+xy=xy^{2}$$ is:

  • Question 6
    1 / -0

    Solution of $$\>y-x\displaystyle \frac{dy}{dx}=5\left(y^{2}+\frac{dy}{dx}\right)$$, is:

  • Question 7
    1 / -0

    If $$ \dfrac{dy}{dx}=xy+2x+3y+6$$, then find the value of $$y(-1)-e^2y(-3)$$.

  • Question 8
    1 / -0

    A normal is drawn at a point P(x, y) of a curve. It meets the x-axis at Q. If PQ is of constant length k, then show that the differential equation describing such curves Is, $$\displaystyle y\frac{dy}{dx}=\pm \sqrt{k^{2}-y^{2}}$$. Find the equation of such a curve passing through (0.k), the curve is a: 

  • Question 9
    1 / -0

    The solution of differential equation $$(e^x + 1) y dy = (y + 1) e^x dx$$ is :

  • Question 10
    1 / -0

    The solution of differential equation  $$(e^x + 1)y dy = (y + 1) e^x  dx$$ is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now