Self Studies

Differential Equations Test - 49

Result Self Studies

Differential Equations Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solution of $$\displaystyle \frac { dy }{ dx } =\frac { y\left( x\log { y } -y \right)  }{ x\left( y\log { x } -x \right)  } $$ is:
    Solution
    $$\displaystyle \frac { dy }{ dx } =\frac { y\left( x\log { y-y }  \right)  }{ x\left( y\log { x-x }  \right)  } $$
    $$\displaystyle \Rightarrow x\left( y\log { x-x }  \right) \frac { dy }{ dx } =y\left( x\log { y-y }  \right) $$
    $$\displaystyle \Rightarrow \left( \log { x } -\frac { x }{ y }  \right) \frac { dy }{ dx } =\log { y } -\frac { y }{ x } $$
    $$\displaystyle \Rightarrow \frac { y }{ x } +\log { x } .\frac { dy }{ dx } =\log { y } +\frac { x }{ y } \frac { dy }{ dx } $$
    $$\displaystyle \Rightarrow \frac { d }{ dx } \left( x\log { x }  \right) =\frac { d }{ dx } \left( x\log { y }  \right) $$
    $$\Rightarrow y\log { y } =x\log { y } +\log { c } \Rightarrow \log { { x }^{ y } } =\log { { y }^{ x } } +\log { c } \Rightarrow { x }^{ y }=c{ y }^{ x }.$$ 
  • Question 2
    1 / -0
    Through any point $$\left ( x,y \right )$$ of a curve which passes through the origin, lines are drawn parallel to the coordiante axes. The curve, given that it divides the rectangle formed by the two lines and the axes into two areas, one of which is twice the other, represents a family of 
    Solution
    Let $$P\left ( x,y \right )$$ be the point on the curve passing through the origin $$O\left ( 0,0 \right )$$,
    and let $$PN$$ and $$PM$$ be the lines parallel to the $$x$$- and $$y$$-axes, respectively. If the equation of the curve is $$y= y\left ( x \right )$$,
    the area $$POM$$ equals $$\displaystyle \int_{0}^{x}ydx$$ and the area $$PON$$ equals $$xy-\displaystyle \int_{0}^{x}ydx$$.
    Assuming that $$2\left ( POM \right )= PON$$, we therefore have $$2\displaystyle \int_{0}^{x}ydx= xy-\displaystyle \int_{0}^{x}ydx\Rightarrow 3\displaystyle \int_{0}^{x}ydx= xy$$.
    Differentiating both sides of this gives 
    $$3y= x\displaystyle \frac{dy}{dx}+y\Rightarrow 2y= x\displaystyle \frac{dy}{dx}\Rightarrow \displaystyle \frac{dy}{y}=2\displaystyle \frac{dx}{x}$$
    $$\Rightarrow \log \left | y \right |= 2\log \left | x \right |+C\Rightarrow y= Cx^{2}$$ with $$C$$ being a constant.
    This solution represents a parabola. 
  • Question 3
    1 / -0
    $$\displaystyle y-x\frac{dy}{dx}=b\left ( 1+x^{2}\frac{dy}{dx} \right ).$$
    Solve the above differential  equation.
    Solution
    After rearranging the terms, we get 
    $$y-b=\dfrac{dy}{dx}(bx^{2}+x)$$
    $$\dfrac{dx}{x(bx+1)}=\dfrac{dy}{y-b}$$
    $$\int \dfrac{bx+1-bx}{x(bx+1)}.dx=ln(y-b)$$
    $$\int \dfrac{1}{x}-\dfrac{b}{bx+1}.dx=ln(y-b)$$
    $$ln(x)-ln(bx+1)+ln(c)=ln(y-b)$$
    $$\dfrac{cx}{bx+1}=y-b$$
  • Question 4
    1 / -0
    The differential equation $$\displaystyle \frac{dy}{dx}= \displaystyle \frac{\sqrt{1-y^{2}}}{y}$$ determines a family of circles with:
    Solution
    $$\displaystyle \frac{dy}{dx}= \displaystyle \frac{\sqrt{1-y^{2}}}{y}$$
    $$\Rightarrow \displaystyle \frac{y}{\sqrt{1-y^{2}}}\: dy= dx$$
    Integrating we have $$-\sqrt{1-y^{2}}= x+C$$
    $$\Rightarrow \left ( x+C \right )^{2}+y^{2}= 1$$. 
    This represents a family of circles with variable centre 
    $$\left ( -C,0 \right )$$ (which lies on $$x$$-axis)  and radius $$1$$
  • Question 5
    1 / -0
    The general solution of the equation $$\displaystyle \frac { dy }{ dx } =\frac { { x }^{ 2 } }{ { y }^{ 2 } } $$ is:
    Solution
    $$\displaystyle \frac { dy }{ dx } =\frac { { x }^{ 2 } }{ { y }^{ 2 } } \Rightarrow { y }^{ 2 }dy={ x }^{ 2 }dx$$
    Integrating both sides
    $$\displaystyle \int { { y }^{ 2 }dy } =\int { { x }^{ 2 }dx } \Rightarrow \frac { { y }^{ 3 } }{ 3 } =\frac { { x }^{ 3 } }{ 3 } +\frac { c }{ 3 } $$
    $$\Rightarrow { x }^{ 3 }-{ y }^{ 3 }=c$$
  • Question 6
    1 / -0
    Find the solution of $$\displaystyle \left ( 3\tan x+4\cot y-7 \right )\sin ^{2}ydx$$ $$\displaystyle -\left ( 4\tan x+7\cot y-5 \right )\cos ^{2}xdy=0$$.
    Solution
    Given  $$\displaystyle \left ( 3\tan x+4\cot y-7 \right )\sin ^{2}y dx -\left ( 4\tan x+7\cot y-5 \right )\cos ^{2}x dy=0$$

    Dividing throughout by $$\displaystyle \sin ^{2}y\cos ^{2}x,$$ we get 

    $$\displaystyle 3\tan x\sec ^{2}x dx-7\sec ^{2}dx-7\cot y cosec^{2}y 
    dy+5cosec^{2}y dy+4 \left ( \cot y\sec ^{2}x dx-\tan x cosec^{2}y \right )dy=0$$
      
    Integrating on both sides

    $$3\int { \tan  x\sec ^{ 2 } xdx } -7\int { \sec ^{ 2 } dx } -7\int { \cot  ycosec^{ 2 }ydy } +5\int { cosec^{ 2 }ydy } $$
    $$+4\int { \left( \cot  y\sec ^{ 2 } xdx-\tan  xcosec^{ 2 }y \right) dy } =0$$

    Put $$\tan x=u \Rightarrow \sec^2 xdx=du$$ for first integral

    and $$\cot y=v \Rightarrow -cosec^2ydy=dv$$ for third integral

    $$\therefore 3\int { udu } -7\tan { x } -7\int { vdv } -5\cot { y } +4\int { \left( \cot  y\sec ^{ 2 } xdx-\tan  xcosec^{ 2 }y \right) dy } =0$$

    Since, differentiation of $$\cot y \tan x=\cot  y\sec ^{ 2 } dx-\tan  xcosec^{ 2 }y$$

    $$\displaystyle 3\frac{\tan ^{2}x}{2}-7\tan x+7\frac{\cot ^{2}y}{2}-5\cot y+4\left ( \cot y\tan x \right )=c$$     
  • Question 7
    1 / -0
    If $$\int_{a}^{x} ty (t) dt = x^{2} + y(x)$$ then y as a function of x is:
    Solution
    Given $$\int_{a}^{x} ty(t)dt = x^{2} + y(x)$$     .....(1)
    $$\Rightarrow xy = 2x + \displaystyle \frac{dy}{dx}$$
    $$ \Rightarrow x(y - 2) = \displaystyle \frac{dy}{dx}$$
    $$\Rightarrow \int xdx = \int \displaystyle \frac{dy}{y - 2}$$
    $$ \Rightarrow \displaystyle \frac{x^{2}}{2} = ln | y - 2 | + lnc$$
    $$\Rightarrow  e^{\displaystyle \frac{x^{2}}{2}} = c(y - 2)$$     ....(2)

    Now, put $$x = a$$ in eqn (1)
    $$ \Rightarrow y = -a^{2}$$
    So, by eqn (2)
    $$\therefore e^{ \frac { a^{ 2 } }{ 2 }  }=c(-a^{ 2 }-2)$$
    $$\Rightarrow c= -\dfrac { e^{ \frac { a^{ 2 } }{ 2 }  } }{ (a^{ 2 }+2) } $$
    Put this value in (2)
    $$\therefore e^{\displaystyle \frac{x^{2}}{2}} = - \displaystyle \frac{e^{\frac{a^{2}}{2}}}{(a^{2} + 2)} (y - 2)$$
    $$\Rightarrow -y + 2 = (a^{2} + 2) e^{\displaystyle \frac{x^{2} - a^{2}}{2}}$$
    $$\Rightarrow y = 2 - (2 + a^{2}) e^{\dfrac{x^{2} -a^{2}}{2}}$$
  • Question 8
    1 / -0
    Find the curve for which the sum of the lengths of the tangent and subtangent at any of its point is proportional to the product of the coordinates of the point of tangency, the proportionality factor is equal to k.
    Solution
    Length of tangent at any point of curve $$= y\sqrt {1+\, \left ( \displaystyle \frac {dx}{dy} \right )^2}\,$$
    Length of subtangent $$=  y\, \displaystyle \frac {dx}{dy}\,$$
    $$y\sqrt {1+\, \left ( \displaystyle \frac {dx}{dy} \right )^2}\, +\, y\, \displaystyle \frac {dx}{dy}\, =\, kxy$$
    $$\Rightarrow\, \sqrt {1+\, \left ( \displaystyle \frac {dx}{dy} \right )^2}\, =\, kx\, -\, \displaystyle \frac {dx}{dy}$$
    $$\Rightarrow\,

    1\, +\, \left ( \displaystyle \frac {dx}{dy} \right )^2\, =\, k^2x^2\,

    +\, \left ( \displaystyle \frac {dx}{dy} \right )^2\,

    -2kx\, \displaystyle \frac {dx}{dy}$$
    $$\Rightarrow\,

    2kx\, \displaystyle \frac {dx}{dy}\, =\, k^2x^2\, -\, 1\quad

    \Rightarrow\, \displaystyle \int \frac {2kxdx}{k^2x^2-1}\, =\, \int dy$$
    $$\Rightarrow\, =\, \displaystyle \frac {1}{k}\, ln\, |c(k^2x^2-1)|$$
  • Question 9
    1 / -0
    Solve:
    $$(1-x^2)\, (1-y)\, dx\, =\, xy\, (1+y)\, dy$$
    Solution
    $$(1-x^2)\, (1-y)\, dx\, =\, xy\, (1+y)\, dy$$

    $$\displaystyle \frac { 1-x^{ 2 } }{ x } dx=\frac { { y }^{ 2 }+y }{ 1-y } dy$$
    Integrating both sides, we get
    $$\displaystyle \log { x } -\frac { x^{ 2 } }{ 2 } =-\int { \left(y+2+  \frac { 2 }{ y-1 } \right)dy}$$

    $$\displaystyle \Rightarrow \log { x } -\frac { x^{ 2 } }{ 2 } =-\frac { y^{ 2 } }{ 2 } -2y+2\log { (y-1) } $$

    $$\log (x) (1-y)^2\, =\, c\, -\, \displaystyle \frac {1}{2}\, y^2\, -\, 2y\, +\, \displaystyle \frac {1}{2}\, x^2$$
  • Question 10
    1 / -0
    Solve:
    $$\displaystyle \frac {dy}{dx}\, +\, \displaystyle \frac {\sqrt {(x^2-1)\, (y^2-1)}}{xy}\, =0$$
    Solution
    Given differential eqn can be written as 
    $$\displaystyle \frac { dy }{ dx } \, =-\, \frac { \sqrt { (x^{ 2 }-1)\, (y^{ 2 }-1) }  }{ xy } \, $$

    $$\Rightarrow \displaystyle \frac { y }{ \sqrt { y^{ 2 }-1 }  } dy\, =-\, \frac { \sqrt { x^{ 2 }-1 }  }{ x } dx\, $$
    Integrating both sides 
    $$\displaystyle \int { \frac { y }{ \sqrt { y^{ 2 }-1 }  } dy\,  } =-\, \int { \frac { \sqrt { x^{ 2 }-1 }  }{ x } dx\,  } $$

    Put $$y^2-1=t$$ 
    $$\Rightarrow 2ydy=dt$$

    Also, put $$\sqrt { x^{ 2 }-1 } =u$$
    $$\Rightarrow x^2-1=u^2$$
    $$\Rightarrow xdx=udu$$

    $$\displaystyle \int { \frac { 1 }{ 2\sqrt { t }  } dt\,  } =-\, \int { \frac { u }{ 1+{ u }^{ 2 } } udu\,  } $$

    $$\displaystyle \Rightarrow \int { \frac { 1 }{ 2\sqrt { t }  } dt\,  } =-\, \int { \frac { { u }^{ 2 } }{ 1+{ u }^{ 2 } } du\,  } $$

    $$ \displaystyle \Rightarrow \sqrt { t } =-\, \int { (1-\frac { 1 }{ 1+{ u }^{ 2 } } )du\,  } $$

    $$ \displaystyle \Rightarrow  \sqrt { { y }^{ 2 }-1 } =-u+\tan ^{ -1 }{ u } +C$$

    $$\displaystyle \Rightarrow  \sqrt { { y }^{ 2 }-1 } =-\sqrt { { x }^{ 2 }-1 } +\tan ^{ -1 }{ \sqrt { { x }^{ 2 }-1 }  } +C$$

    $$\displaystyle \Rightarrow  \sqrt { { y }^{ 2 }-1 } =-\sqrt { { x }^{ 2 }-1 } +\sec ^{ -1 }{ x} +C$$                         ($$\tan ^{ -1 }{ \sqrt { { x }^{ 2 }-1 }  }=z \Rightarrow  \sqrt { { x }^{ 2 }-1 } =\tan z \Rightarrow \sec z=x$$ )
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now