Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    Solution of $$\displaystyle \frac { dy }{ dx } =\frac { y\left( x\log { y } -y \right)  }{ x\left( y\log { x } -x \right)  } $$ is:

  • Question 2
    1 / -0

    Through any point $$\left ( x,y \right )$$ of a curve which passes through the origin, lines are drawn parallel to the coordiante axes. The curve, given that it divides the rectangle formed by the two lines and the axes into two areas, one of which is twice the other, represents a family of 

  • Question 3
    1 / -0

    $$\displaystyle y-x\frac{dy}{dx}=b\left ( 1+x^{2}\frac{dy}{dx} \right ).$$
    Solve the above differential  equation.

  • Question 4
    1 / -0

    The differential equation $$\displaystyle \frac{dy}{dx}= \displaystyle \frac{\sqrt{1-y^{2}}}{y}$$ determines a family of circles with:

  • Question 5
    1 / -0

    The general solution of the equation $$\displaystyle \frac { dy }{ dx } =\frac { { x }^{ 2 } }{ { y }^{ 2 } } $$ is:

  • Question 6
    1 / -0

    Find the solution of $$\displaystyle \left ( 3\tan x+4\cot y-7 \right )\sin ^{2}ydx$$ $$\displaystyle -\left ( 4\tan x+7\cot y-5 \right )\cos ^{2}xdy=0$$.

  • Question 7
    1 / -0

    If $$\int_{a}^{x} ty (t) dt = x^{2} + y(x)$$ then y as a function of x is:

  • Question 8
    1 / -0

    Find the curve for which the sum of the lengths of the tangent and subtangent at any of its point is proportional to the product of the coordinates of the point of tangency, the proportionality factor is equal to k.

  • Question 9
    1 / -0

    Solve:
    $$(1-x^2)\, (1-y)\, dx\, =\, xy\, (1+y)\, dy$$

  • Question 10
    1 / -0

    Solve:
    $$\displaystyle \frac {dy}{dx}\, +\, \displaystyle \frac {\sqrt {(x^2-1)\, (y^2-1)}}{xy}\, =0$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now