Self Studies

Differential Equations Test - 52

Result Self Studies

Differential Equations Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solution of the equation $$\dfrac {dy}{dx} = \dfrac {y\dfrac {d(\phi (x))}{dx} - y^{2}}{\phi (x)}$$ is
    Solution

  • Question 2
    1 / -0
    The solution of the differential equation $$\dfrac{dy}{dx}=\dfrac{y}{x}+\dfrac{\theta (y/x)}{\theta ' (y/x)}$$ is 
  • Question 3
    1 / -0
    The solution of the differential equation
    $$\left( 2x\cos { y } +3{ x }^{ 2 }y \right) dx+\left( { x }^{ 3 }-{ x }^{ 2 }\sin { y } -y \right) dy=0$$, is given by
  • Question 4
    1 / -0
    The solution of differential equation $$x\cos^{2}y dx = y\cos^{2} x  dy$$ is
    Solution
    $$x\cos^{2}y dx = y\cos^{2} x dy$$
    $$\Rightarrow \dfrac {x}{\cos^{2}x} dx = \dfrac {y}{\cos^{2}y} dy$$
    $$\Rightarrow x\sec^{2}x dx = y\sec^{2}y dy$$
    On integration, we get
    $$\Rightarrow x\tan x - \int 1\cdot \tan x dx$$ $$= y \tan y - \int 1 \cdot \tan y dy$$
    $$\Rightarrow x\tan x - \log \sec x = y\tan y - \log \sec y + c$$
    $$\Rightarrow x\tan x - y\tan y - (\log \sec x- \log \sec y) = c$$
    $$\Rightarrow x\tan x - y\tan y - \log\left(\dfrac{\sec x}{\sec y}\right) = c$$.
  • Question 5
    1 / -0
    The solution of the differential equation
    $$x=1+xy\cfrac { dy }{ dx } +\cfrac { { \left( xy \right)  }^{ 2 } }{ 2! } { \left( \cfrac { dy }{ dx }  \right)  }^{ 2 }+\cfrac { { \left( xy \right)  }^{ 3 } }{ 3! } { \left( \cfrac { dy }{ dx }  \right)  }^{ 3 }+...\quad \quad $$
    is
    Solution
    Given Differential equation is the expansion of   $$e^{xy\frac{dy}{dx}}$$
    So, $$x=e^{xy\frac{dy}{dx}}$$
    Taking log on both sides, We get
    $$log x=xy\dfrac{dy}{dx}$$
    $$\dfrac{log x}{x}dx=ydy$$
    Integrating both sides 
    $$\Rightarrow \dfrac{(log x)^2}{2}+C=\dfrac{y^2}{2}$$
    $$\Rightarrow y=\pm\sqrt{(log_ex)^2+2C}$$
  • Question 6
    1 / -0
    Let f(x) be differentiable on the interval $$(0,\infty)$$ such that $$f(1)=1$$ and $$\displaystyle \lim_{t \rightarrow x }\dfrac{t^2f(x)-x^2f(t)}{t-x}=1$$ for each $$x>0$$. Then f(x) is 
    Solution

  • Question 7
    1 / -0
    The solution of the differential equation, $$x^2\dfrac{dy}{dx}.cos\dfrac{1}{x}=-1$$, where $$y\rightarrow -1$$ as $$x\rightarrow \infty$$ is 
    Solution

    Given,

    $${ x }^{ 2 }\dfrac { dy }{ dx } .cos{ \dfrac { 1 }{ x }  }=-1$$

    $$\Rightarrow dy=\dfrac { 1 }{ cos{ \dfrac { 1 }{ x }  } } .\dfrac { -1 }{ { x }^{ 2 } } dx$$

    Let us assume $$\dfrac { 1 }{ x } =t$$.

    Therefore, $$\dfrac { -1 }{ { x }^{ 2 } } dx=dt$$.

    $$\Rightarrow dy=\dfrac { 1 }{ cos{ t } } dt$$

    $$\Rightarrow dy=\sec { t } dt$$

    Integrating both sides, we get,

    $$\Rightarrow \int { dy } =\int { \sec { t }  } dt$$

    $$\Rightarrow y=log_{ e }{ \left| \sec { t } +tan{ t } \right|  }+C$$

    $$\Rightarrow y=log_{ e }{ \left| \sec { \dfrac { 1 }{ x }  } +tan{ \dfrac { 1 }{ x }  } \right|  }+C$$

    Now, given that $$y\rightarrow -1\quad as\quad x\rightarrow \infty $$

    $${ \Rightarrow lim }_{ x\rightarrow \infty  }y=-1$$

    $${ \Rightarrow lim }_{ x\rightarrow \infty  }\left( log_{ e }{ \left| \sec { \dfrac { 1 }{ x }  } +tan{ \dfrac { 1 }{ x }  } \right|  }+C \right) =-1$$

    $${ \Rightarrow  }\left( log_{ e }{ \left| \sec { 0 } +tan{ 0 } \right|  }+C \right) =-1$$

    $$\Rightarrow C=-1$$.

     

    Therefore, the solution of given differential equation is:

    $$y=log_{ e }{ \left| \sec { \dfrac { 1 }{ x }  } +tan{ \dfrac { 1 }{ x }  } \right|  }-1$$.

     

     

  • Question 8
    1 / -0
    Solution of the differential equation 
    $$\frac{dy}{dx}$$ = $$\frac{3 x^2 y^4 + 2 xy}{x^2 - 2 x^3 y^3}$$ is
  • Question 9
    1 / -0
    If x and y are independent variables and $$f(x)=(\int^x_0e^{x-y}f'(y)dy)-(x^2-x+1)e^x$$ where f(x) is a differentiable function, then $$f(\dfrac{-1}{2})$$ equals.
    Solution

  • Question 10
    1 / -0
    The solution of the differential equation $$\dfrac {x}{x^{2} + y^{2}} dy = \left (\dfrac {y}{x^{2} + y^{2}} + 1\right )dx$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now