Given,
$${ x }^{ 2 }\dfrac { dy }{ dx }
.cos{ \dfrac { 1 }{ x } }=-1$$
$$\Rightarrow dy=\dfrac { 1 }{ cos{ \dfrac
{ 1 }{ x } } } .\dfrac { -1 }{ { x }^{ 2 } } dx$$
Let us assume $$\dfrac { 1 }{ x }
=t$$.
Therefore, $$\dfrac { -1 }{ { x }^{
2 } } dx=dt$$.
$$\Rightarrow dy=\dfrac { 1 }{ cos{
t } } dt$$
$$\Rightarrow dy=\sec { t } dt$$
Integrating both sides, we get,
$$\Rightarrow \int { dy } =\int {
\sec { t } } dt$$
$$\Rightarrow y=log_{ e }{ \left|
\sec { t } +tan{ t } \right| }+C$$
$$\Rightarrow y=log_{ e }{ \left|
\sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } } \right|
}+C$$
Now, given that $$y\rightarrow
-1\quad as\quad x\rightarrow \infty $$
$${ \Rightarrow lim }_{ x\rightarrow \infty }y=-1$$
$${ \Rightarrow lim }_{ x\rightarrow \infty }\left( log_{
e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } }
\right| }+C \right) =-1$$
$${ \Rightarrow }\left( log_{ e }{ \left| \sec { 0 } +tan{
0 } \right| }+C \right) =-1$$
$$\Rightarrow C=-1$$.
Therefore, the solution of given differential equation is:
$$y=log_{ e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac
{ 1 }{ x } } \right| }-1$$.